January  2020, 5: 3 doi: 10.1186/s41546-020-00045-y

Upper risk bounds in internal factor models with constrained specification sets

1. Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten Synagoge 1, KG II, 79098 Freiburg i. Br., Germany

2. Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Straße 1, 79104 Freiburg, Germany

Received  April 17, 2019 Published  March 2020

For the class of (partially specified) internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models. This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor. The proof of our main comparison result is not standard. It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers. An application to real market data shows considerable improvement over the standard method.
Citation: Jonathan Ansari, Ludger Rüschendorf. Upper risk bounds in internal factor models with constrained specification sets. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 3-. doi: 10.1186/s41546-020-00045-y
References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198.,

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation.,

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22.,

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287.,

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148.,

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178.,

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959.,

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659.,

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863.,

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26.,

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151.,

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226.,

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129.,

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104.,

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352.,

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764.,

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48.,

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790.,

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363.,

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392.,

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265.,

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301.,

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95.,

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton.,

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223.,

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York.,

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740.,

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043.,

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester.,

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York.,

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162.,

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132.,

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840.,

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53.,

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266.,

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927.,

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York.,

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12.,

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham.,

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74.,

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York.,

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation.,

show all references

References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198.,

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation.,

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22.,

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287.,

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148.,

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178.,

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959.,

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659.,

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863.,

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26.,

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151.,

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226.,

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129.,

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104.,

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352.,

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764.,

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48.,

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790.,

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363.,

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392.,

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265.,

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301.,

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95.,

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton.,

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223.,

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York.,

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740.,

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043.,

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester.,

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York.,

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162.,

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132.,

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840.,

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53.,

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266.,

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927.,

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York.,

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12.,

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham.,

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74.,

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York.,

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation.,

[1]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[2]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[3]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[4]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[5]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[6]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[11]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[12]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[13]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[14]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[15]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[16]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[17]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[18]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[19]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[20]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[Back to Top]