January  2020, 5: 3 doi: 10.1186/s41546-020-00045-y

Upper risk bounds in internal factor models with constrained specification sets

1. Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten Synagoge 1, KG II, 79098 Freiburg i. Br., Germany

2. Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Straße 1, 79104 Freiburg, Germany

Received  April 17, 2019 Published  March 2020

For the class of (partially specified) internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models. This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor. The proof of our main comparison result is not standard. It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers. An application to real market data shows considerable improvement over the standard method.
Citation: Jonathan Ansari, Ludger Rüschendorf. Upper risk bounds in internal factor models with constrained specification sets. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 3-. doi: 10.1186/s41546-020-00045-y
References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198. Google Scholar

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation. Google Scholar

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22. Google Scholar

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287. Google Scholar

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148. Google Scholar

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178. Google Scholar

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959. Google Scholar

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659. Google Scholar

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863. Google Scholar

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26. Google Scholar

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151. Google Scholar

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226. Google Scholar

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129. Google Scholar

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104. Google Scholar

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352. Google Scholar

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764. Google Scholar

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48. Google Scholar

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790. Google Scholar

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363. Google Scholar

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392. Google Scholar

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265. Google Scholar

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301. Google Scholar

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95. Google Scholar

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton. Google Scholar

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223. Google Scholar

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York. Google Scholar

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740. Google Scholar

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043. Google Scholar

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester. Google Scholar

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York. Google Scholar

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162. Google Scholar

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132. Google Scholar

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840. Google Scholar

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53. Google Scholar

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266. Google Scholar

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927. Google Scholar

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York. Google Scholar

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12. Google Scholar

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham. Google Scholar

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74. Google Scholar

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York. Google Scholar

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation. Google Scholar

show all references

References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198. Google Scholar

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation. Google Scholar

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22. Google Scholar

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287. Google Scholar

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148. Google Scholar

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178. Google Scholar

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959. Google Scholar

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659. Google Scholar

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863. Google Scholar

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26. Google Scholar

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151. Google Scholar

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226. Google Scholar

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129. Google Scholar

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104. Google Scholar

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352. Google Scholar

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764. Google Scholar

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48. Google Scholar

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790. Google Scholar

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363. Google Scholar

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392. Google Scholar

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265. Google Scholar

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301. Google Scholar

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95. Google Scholar

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton. Google Scholar

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223. Google Scholar

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York. Google Scholar

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740. Google Scholar

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043. Google Scholar

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester. Google Scholar

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York. Google Scholar

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162. Google Scholar

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132. Google Scholar

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840. Google Scholar

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53. Google Scholar

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266. Google Scholar

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927. Google Scholar

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York. Google Scholar

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12. Google Scholar

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham. Google Scholar

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74. Google Scholar

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York. Google Scholar

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation. Google Scholar

[1]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[2]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[3]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[4]

Yishan Gong, Yang Yang. Asymptotics for VaR and CTE of total aggregate losses in a bivariate operational risk cell model. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021022

[5]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[6]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[7]

Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial & Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849

[8]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[9]

Zhimin Zhang. On a risk model with randomized dividend-decision times. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1041-1058. doi: 10.3934/jimo.2014.10.1041

[10]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[11]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[12]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[13]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[14]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[15]

Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3-. doi: 10.1186/s41546-017-0012-9

[16]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[17]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial & Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[18]

Liyuan Wang, Zhiping Chen, Peng Yang. Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1203-1233. doi: 10.3934/jimo.2020018

[19]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[20]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[Back to Top]