January  2020, 5: 6 doi: 10.1186/s41546-020-00048-9

Efficient hedging under ambiguity in continuous time

Princeton University, Department of Operations Research and Financial Engineering, Princeton 08540, NJ, USA

Received  March 13, 2019 Published  August 2020

It is well known that the minimal superhedging price of a contingent claim is too high for practical use. In a continuous-time model uncertainty framework, we consider a relaxed hedging criterion based on acceptable shortfall risks. Combining existing aggregation and convex dual representation theorems, we derive duality results for the minimal price on the set of upper semicontinuous discounted claims.
Citation: Ludovic Tangpi. Efficient hedging under ambiguity in continuous time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 6-. doi: 10.1186/s41546-020-00048-9
References:
[1]

Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016),

[2]

Aliprantis, C.D., Border, K.C.:: Infinite Dimensional Analysis: a Hitchhiker’s Guide, 3rd ed. Springer(2006),

[3]

Arai, T.: Convex risk measures on orlicz spaces: inf-convolution and shortfall. Math. Finan. Econ. 3, 73– 88 (2010),

[4]

Bartl, D., Drapeau, S., Tangpi, L.: Computational aspects of robust optimized certainty equivalents and option pricing. Math. Finance. 30(1), 287–09 (2020),

[5]

Bartl, D., Kupper, M., Prömel, D.J., Tangpi, L.: Duality for pathwise superhedging in continuous time. Finance Stoch. 23(3), 697–728 (2019),

[6]

Bartl, D., Kupper, M., Neufeld, A.: Pathwise superhedging on prediction sets. Finance Stoch. 24, 215–48(2020),

[7]

Becherer, D., Kentia, K.: Good deal hedging and valuation under combined uncertainty about drift and volatility. Probab. Uncertain. Quant. Risk. 2(13) (2017),

[8]

Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices – a mass transport approach. Finance Stoch. 17(3), 477–501 (2013),

[9]

Ben-Tal, A., Taboulle, M.: An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance. 17, 449–476 (2007),

[10]

Bion-Nadal, J., Di Nunno, G.: Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞. Finance Stoch. 17(3), 587–613 (2013),

[11]

Bion-Nadal, J., Kervarec, M.: Risk Measuring under Model Uncertainty. Ann. Appl. Probab. 22(1), 213– 238 (2012),

[12]

Burzoni, M.: Arbitrage and hedging in model independent markets with frictions. SIAM J. Financial Math. 7(1), 812–844 (2016),

[13]

Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab. 27(3), 1452– 1477 (2017),

[14]

Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. Preprint (2015),

[15]

Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time.SIAM J. Financial Math. 8(1), 738–765 (2017),

[16]

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.Ann. 300(3), 463–520 (1994),

[17]

Dellacherie, C., Meyer, P.-A.:: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006),

[18]

Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab.Theory Relat. Fields. 160(1-2), 391–427 (2014),

[19]

Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953),

[20]

Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999),

[21]

Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000),

[22]

Hou, Z., Obłój, J.: On robust pricing-hedging duality in continuous time. Finance Stoch. 22(3), 511–567(2018),

[23]

Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the fatou property. Adv. Math.Econ. 9, 49–71 (2006),

[24]

Kaina, M., Rüschendorf, L.: On convex risk measures on lp-spaces. Math. Meth. Oper. Res. 69(3), 475– 495 (2009),

[25]

Karandikar, R.L.: On quadratic variation process of a continuous martingale. Illinois J. Math. 27, 178–181(1983),

[26]

Karatzas, I., Shreve, S.E.:: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics).Springer, New York (2004),

[27]

Kramkov, D., Schachermayer, W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Market. Ann. Appl. Probab. 9(3), 904–950 (1999),

[28]

Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math.Financ. Econ. 2(3), 189–210 (2009),

[29]

Neufeld, A., Nutz, M.: Superreplication under Volatility Uncertainty for Measurable Claims. Electron. J.Probab. 18(48), 1–14 (2013),

[30]

Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv Preprint 1002.4546(2010),

[31]

Rudloff, B.: Convex hedging in incomplete markets. Appl. Math. Finance. 14(5), 437–452 (2007),

[32]

Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Proc.Appl. 121(2), 265–287 (2011a),

[33]

Soner, M.H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67) (2011b),

[34]

Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013),

[35]

Tangpi, L.: Dual Representation of Convex Increasing Functionals with Applications to Finance. PhD thesis, University of Konstanz (2015),

[36]

Wisniewski, A.: The structure of measurable mappings on metric spaces. Proc. A.M.S. 122(1), 147–150(1994),

show all references

References:
[1]

Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016),

[2]

Aliprantis, C.D., Border, K.C.:: Infinite Dimensional Analysis: a Hitchhiker’s Guide, 3rd ed. Springer(2006),

[3]

Arai, T.: Convex risk measures on orlicz spaces: inf-convolution and shortfall. Math. Finan. Econ. 3, 73– 88 (2010),

[4]

Bartl, D., Drapeau, S., Tangpi, L.: Computational aspects of robust optimized certainty equivalents and option pricing. Math. Finance. 30(1), 287–09 (2020),

[5]

Bartl, D., Kupper, M., Prömel, D.J., Tangpi, L.: Duality for pathwise superhedging in continuous time. Finance Stoch. 23(3), 697–728 (2019),

[6]

Bartl, D., Kupper, M., Neufeld, A.: Pathwise superhedging on prediction sets. Finance Stoch. 24, 215–48(2020),

[7]

Becherer, D., Kentia, K.: Good deal hedging and valuation under combined uncertainty about drift and volatility. Probab. Uncertain. Quant. Risk. 2(13) (2017),

[8]

Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices – a mass transport approach. Finance Stoch. 17(3), 477–501 (2013),

[9]

Ben-Tal, A., Taboulle, M.: An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance. 17, 449–476 (2007),

[10]

Bion-Nadal, J., Di Nunno, G.: Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞. Finance Stoch. 17(3), 587–613 (2013),

[11]

Bion-Nadal, J., Kervarec, M.: Risk Measuring under Model Uncertainty. Ann. Appl. Probab. 22(1), 213– 238 (2012),

[12]

Burzoni, M.: Arbitrage and hedging in model independent markets with frictions. SIAM J. Financial Math. 7(1), 812–844 (2016),

[13]

Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab. 27(3), 1452– 1477 (2017),

[14]

Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. Preprint (2015),

[15]

Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time.SIAM J. Financial Math. 8(1), 738–765 (2017),

[16]

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.Ann. 300(3), 463–520 (1994),

[17]

Dellacherie, C., Meyer, P.-A.:: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006),

[18]

Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab.Theory Relat. Fields. 160(1-2), 391–427 (2014),

[19]

Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953),

[20]

Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999),

[21]

Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000),

[22]

Hou, Z., Obłój, J.: On robust pricing-hedging duality in continuous time. Finance Stoch. 22(3), 511–567(2018),

[23]

Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the fatou property. Adv. Math.Econ. 9, 49–71 (2006),

[24]

Kaina, M., Rüschendorf, L.: On convex risk measures on lp-spaces. Math. Meth. Oper. Res. 69(3), 475– 495 (2009),

[25]

Karandikar, R.L.: On quadratic variation process of a continuous martingale. Illinois J. Math. 27, 178–181(1983),

[26]

Karatzas, I., Shreve, S.E.:: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics).Springer, New York (2004),

[27]

Kramkov, D., Schachermayer, W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Market. Ann. Appl. Probab. 9(3), 904–950 (1999),

[28]

Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math.Financ. Econ. 2(3), 189–210 (2009),

[29]

Neufeld, A., Nutz, M.: Superreplication under Volatility Uncertainty for Measurable Claims. Electron. J.Probab. 18(48), 1–14 (2013),

[30]

Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv Preprint 1002.4546(2010),

[31]

Rudloff, B.: Convex hedging in incomplete markets. Appl. Math. Finance. 14(5), 437–452 (2007),

[32]

Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Proc.Appl. 121(2), 265–287 (2011a),

[33]

Soner, M.H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67) (2011b),

[34]

Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013),

[35]

Tangpi, L.: Dual Representation of Convex Increasing Functionals with Applications to Finance. PhD thesis, University of Konstanz (2015),

[36]

Wisniewski, A.: The structure of measurable mappings on metric spaces. Proc. A.M.S. 122(1), 147–150(1994),

[1]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[2]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[3]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[4]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[7]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[8]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[9]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[10]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[11]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[12]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[13]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[14]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[15]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[16]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[17]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[20]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]