January  2020, 5: 6 doi: 10.1186/s41546-020-00048-9

Efficient hedging under ambiguity in continuous time

Princeton University, Department of Operations Research and Financial Engineering, Princeton 08540, NJ, USA

Received  March 13, 2019 Published  August 2020

It is well known that the minimal superhedging price of a contingent claim is too high for practical use. In a continuous-time model uncertainty framework, we consider a relaxed hedging criterion based on acceptable shortfall risks. Combining existing aggregation and convex dual representation theorems, we derive duality results for the minimal price on the set of upper semicontinuous discounted claims.
Citation: Ludovic Tangpi. Efficient hedging under ambiguity in continuous time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 6-. doi: 10.1186/s41546-020-00048-9
References:
[1]

Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016)

[2]

Aliprantis, C.D., Border, K.C.:: Infinite Dimensional Analysis: a Hitchhiker’s Guide, 3rd ed. Springer(2006)

[3]

Arai, T.: Convex risk measures on orlicz spaces: inf-convolution and shortfall. Math. Finan. Econ. 3, 73– 88 (2010)

[4]

Bartl, D., Drapeau, S., Tangpi, L.: Computational aspects of robust optimized certainty equivalents and option pricing. Math. Finance. 30(1), 287–09 (2020)

[5]

Bartl, D., Kupper, M., Prömel, D.J., Tangpi, L.: Duality for pathwise superhedging in continuous time. Finance Stoch. 23(3), 697–728 (2019)

[6]

Bartl, D., Kupper, M., Neufeld, A.: Pathwise superhedging on prediction sets. Finance Stoch. 24, 215–48(2020)

[7]

Becherer, D., Kentia, K.: Good deal hedging and valuation under combined uncertainty about drift and volatility. Probab. Uncertain. Quant. Risk. 2(13) (2017)

[8]

Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices – a mass transport approach. Finance Stoch. 17(3), 477–501 (2013)

[9]

Ben-Tal, A., Taboulle, M.: An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance. 17, 449–476 (2007)

[10]

Bion-Nadal, J., Di Nunno, G.: Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞. Finance Stoch. 17(3), 587–613 (2013)

[11]

Bion-Nadal, J., Kervarec, M.: Risk Measuring under Model Uncertainty. Ann. Appl. Probab. 22(1), 213– 238 (2012)

[12]

Burzoni, M.: Arbitrage and hedging in model independent markets with frictions. SIAM J. Financial Math. 7(1), 812–844 (2016)

[13]

Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab. 27(3), 1452– 1477 (2017)

[14]

Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. Preprint (2015)

[15]

Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time.SIAM J. Financial Math. 8(1), 738–765 (2017)

[16]

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.Ann. 300(3), 463–520 (1994)

[17]

Dellacherie, C., Meyer, P.-A.:: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006)

[18]

Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab.Theory Relat. Fields. 160(1-2), 391–427 (2014)

[19]

Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953)

[20]

Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999)

[21]

Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000)

[22]

Hou, Z., Obłój, J.: On robust pricing-hedging duality in continuous time. Finance Stoch. 22(3), 511–567(2018)

[23]

Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the fatou property. Adv. Math.Econ. 9, 49–71 (2006)

[24]

Kaina, M., Rüschendorf, L.: On convex risk measures on lp-spaces. Math. Meth. Oper. Res. 69(3), 475– 495 (2009)

[25]

Karandikar, R.L.: On quadratic variation process of a continuous martingale. Illinois J. Math. 27, 178–181(1983)

[26]

Karatzas, I., Shreve, S.E.:: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics).Springer, New York (2004)

[27]

Kramkov, D., Schachermayer, W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Market. Ann. Appl. Probab. 9(3), 904–950 (1999)

[28]

Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math.Financ. Econ. 2(3), 189–210 (2009)

[29]

Neufeld, A., Nutz, M.: Superreplication under Volatility Uncertainty for Measurable Claims. Electron. J.Probab. 18(48), 1–14 (2013)

[30]

Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv Preprint 1002.4546(2010)

[31]

Rudloff, B.: Convex hedging in incomplete markets. Appl. Math. Finance. 14(5), 437–452 (2007)

[32]

Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Proc.Appl. 121(2), 265–287 (2011a)

[33]

Soner, M.H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67) (2011b)

[34]

Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013)

[35]

Tangpi, L.: Dual Representation of Convex Increasing Functionals with Applications to Finance. PhD thesis, University of Konstanz (2015)

[36]

Wisniewski, A.: The structure of measurable mappings on metric spaces. Proc. A.M.S. 122(1), 147–150(1994)

show all references

References:
[1]

Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016)

[2]

Aliprantis, C.D., Border, K.C.:: Infinite Dimensional Analysis: a Hitchhiker’s Guide, 3rd ed. Springer(2006)

[3]

Arai, T.: Convex risk measures on orlicz spaces: inf-convolution and shortfall. Math. Finan. Econ. 3, 73– 88 (2010)

[4]

Bartl, D., Drapeau, S., Tangpi, L.: Computational aspects of robust optimized certainty equivalents and option pricing. Math. Finance. 30(1), 287–09 (2020)

[5]

Bartl, D., Kupper, M., Prömel, D.J., Tangpi, L.: Duality for pathwise superhedging in continuous time. Finance Stoch. 23(3), 697–728 (2019)

[6]

Bartl, D., Kupper, M., Neufeld, A.: Pathwise superhedging on prediction sets. Finance Stoch. 24, 215–48(2020)

[7]

Becherer, D., Kentia, K.: Good deal hedging and valuation under combined uncertainty about drift and volatility. Probab. Uncertain. Quant. Risk. 2(13) (2017)

[8]

Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices – a mass transport approach. Finance Stoch. 17(3), 477–501 (2013)

[9]

Ben-Tal, A., Taboulle, M.: An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance. 17, 449–476 (2007)

[10]

Bion-Nadal, J., Di Nunno, G.: Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞. Finance Stoch. 17(3), 587–613 (2013)

[11]

Bion-Nadal, J., Kervarec, M.: Risk Measuring under Model Uncertainty. Ann. Appl. Probab. 22(1), 213– 238 (2012)

[12]

Burzoni, M.: Arbitrage and hedging in model independent markets with frictions. SIAM J. Financial Math. 7(1), 812–844 (2016)

[13]

Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab. 27(3), 1452– 1477 (2017)

[14]

Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. Preprint (2015)

[15]

Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time.SIAM J. Financial Math. 8(1), 738–765 (2017)

[16]

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.Ann. 300(3), 463–520 (1994)

[17]

Dellacherie, C., Meyer, P.-A.:: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006)

[18]

Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab.Theory Relat. Fields. 160(1-2), 391–427 (2014)

[19]

Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953)

[20]

Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999)

[21]

Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000)

[22]

Hou, Z., Obłój, J.: On robust pricing-hedging duality in continuous time. Finance Stoch. 22(3), 511–567(2018)

[23]

Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the fatou property. Adv. Math.Econ. 9, 49–71 (2006)

[24]

Kaina, M., Rüschendorf, L.: On convex risk measures on lp-spaces. Math. Meth. Oper. Res. 69(3), 475– 495 (2009)

[25]

Karandikar, R.L.: On quadratic variation process of a continuous martingale. Illinois J. Math. 27, 178–181(1983)

[26]

Karatzas, I., Shreve, S.E.:: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics).Springer, New York (2004)

[27]

Kramkov, D., Schachermayer, W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Market. Ann. Appl. Probab. 9(3), 904–950 (1999)

[28]

Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math.Financ. Econ. 2(3), 189–210 (2009)

[29]

Neufeld, A., Nutz, M.: Superreplication under Volatility Uncertainty for Measurable Claims. Electron. J.Probab. 18(48), 1–14 (2013)

[30]

Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv Preprint 1002.4546(2010)

[31]

Rudloff, B.: Convex hedging in incomplete markets. Appl. Math. Finance. 14(5), 437–452 (2007)

[32]

Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Proc.Appl. 121(2), 265–287 (2011a)

[33]

Soner, M.H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67) (2011b)

[34]

Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013)

[35]

Tangpi, L.: Dual Representation of Convex Increasing Functionals with Applications to Finance. PhD thesis, University of Konstanz (2015)

[36]

Wisniewski, A.: The structure of measurable mappings on metric spaces. Proc. A.M.S. 122(1), 147–150(1994)

[1]

Georgios I. Papayiannis. Robust policy selection and harvest risk quantification for natural resources management under model uncertainty. Journal of Dynamics and Games, 2022, 9 (2) : 203-217. doi: 10.3934/jdg.2022004

[2]

Nana Wan, Li Li, Xiaozhi Wu, Jianchang Fan. Risk minimization inventory model with a profit target and option contracts under spot price uncertainty. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2827-2845. doi: 10.3934/jimo.2021093

[3]

Dirk Becherer, Klebert Kentia. Good deal hedging and valuation under combined uncertainty about drift and volatility. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 13-. doi: 10.1186/s41546-017-0024-5

[4]

Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial and Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199

[5]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[6]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[7]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control and Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036

[8]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[9]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094

[10]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[11]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[12]

Xiaohu Qian, Min Huang, Wai-Ki Ching, Loo Hay Lee, Xingwei Wang. Mechanism design in project procurement auctions with cost uncertainty and failure risk. Journal of Industrial and Management Optimization, 2019, 15 (1) : 131-157. doi: 10.3934/jimo.2018036

[13]

. Publisher Correction to: Probability, uncertainty and quantitative risk, volume 4. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 7-. doi: 10.1186/s41546-019-0041-7

[14]

Eliana Pepa Risma. A deferred acceptance algorithm with contracts. Journal of Dynamics and Games, 2015, 2 (3&4) : 289-302. doi: 10.3934/jdg.2015005

[15]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[16]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[17]

Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2237-2253. doi: 10.3934/jimo.2021065

[18]

Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017

[19]

Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems and Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927

[20]

Alberto A. Pinto, Telmo Parreira. Localization and prices in the quadratic Hotelling model with uncertainty. Journal of Dynamics and Games, 2016, 3 (2) : 121-142. doi: 10.3934/jdg.2016006

 Impact Factor: 

Metrics

  • PDF downloads (66)
  • HTML views (521)
  • Cited by (0)

Other articles
by authors

[Back to Top]