January  2020, 5: 6 doi: 10.1186/s41546-020-00048-9

Efficient hedging under ambiguity in continuous time

Princeton University, Department of Operations Research and Financial Engineering, Princeton 08540, NJ, USA

Received  March 13, 2019 Published  August 2020

It is well known that the minimal superhedging price of a contingent claim is too high for practical use. In a continuous-time model uncertainty framework, we consider a relaxed hedging criterion based on acceptable shortfall risks. Combining existing aggregation and convex dual representation theorems, we derive duality results for the minimal price on the set of upper semicontinuous discounted claims.
Citation: Ludovic Tangpi. Efficient hedging under ambiguity in continuous time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 6-. doi: 10.1186/s41546-020-00048-9
References:
[1]

Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016),

[2]

Aliprantis, C.D., Border, K.C.:: Infinite Dimensional Analysis: a Hitchhiker’s Guide, 3rd ed. Springer(2006),

[3]

Arai, T.: Convex risk measures on orlicz spaces: inf-convolution and shortfall. Math. Finan. Econ. 3, 73– 88 (2010),

[4]

Bartl, D., Drapeau, S., Tangpi, L.: Computational aspects of robust optimized certainty equivalents and option pricing. Math. Finance. 30(1), 287–09 (2020),

[5]

Bartl, D., Kupper, M., Prömel, D.J., Tangpi, L.: Duality for pathwise superhedging in continuous time. Finance Stoch. 23(3), 697–728 (2019),

[6]

Bartl, D., Kupper, M., Neufeld, A.: Pathwise superhedging on prediction sets. Finance Stoch. 24, 215–48(2020),

[7]

Becherer, D., Kentia, K.: Good deal hedging and valuation under combined uncertainty about drift and volatility. Probab. Uncertain. Quant. Risk. 2(13) (2017),

[8]

Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices – a mass transport approach. Finance Stoch. 17(3), 477–501 (2013),

[9]

Ben-Tal, A., Taboulle, M.: An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance. 17, 449–476 (2007),

[10]

Bion-Nadal, J., Di Nunno, G.: Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞. Finance Stoch. 17(3), 587–613 (2013),

[11]

Bion-Nadal, J., Kervarec, M.: Risk Measuring under Model Uncertainty. Ann. Appl. Probab. 22(1), 213– 238 (2012),

[12]

Burzoni, M.: Arbitrage and hedging in model independent markets with frictions. SIAM J. Financial Math. 7(1), 812–844 (2016),

[13]

Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab. 27(3), 1452– 1477 (2017),

[14]

Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. Preprint (2015),

[15]

Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time.SIAM J. Financial Math. 8(1), 738–765 (2017),

[16]

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.Ann. 300(3), 463–520 (1994),

[17]

Dellacherie, C., Meyer, P.-A.:: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006),

[18]

Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab.Theory Relat. Fields. 160(1-2), 391–427 (2014),

[19]

Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953),

[20]

Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999),

[21]

Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000),

[22]

Hou, Z., Obłój, J.: On robust pricing-hedging duality in continuous time. Finance Stoch. 22(3), 511–567(2018),

[23]

Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the fatou property. Adv. Math.Econ. 9, 49–71 (2006),

[24]

Kaina, M., Rüschendorf, L.: On convex risk measures on lp-spaces. Math. Meth. Oper. Res. 69(3), 475– 495 (2009),

[25]

Karandikar, R.L.: On quadratic variation process of a continuous martingale. Illinois J. Math. 27, 178–181(1983),

[26]

Karatzas, I., Shreve, S.E.:: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics).Springer, New York (2004),

[27]

Kramkov, D., Schachermayer, W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Market. Ann. Appl. Probab. 9(3), 904–950 (1999),

[28]

Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math.Financ. Econ. 2(3), 189–210 (2009),

[29]

Neufeld, A., Nutz, M.: Superreplication under Volatility Uncertainty for Measurable Claims. Electron. J.Probab. 18(48), 1–14 (2013),

[30]

Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv Preprint 1002.4546(2010),

[31]

Rudloff, B.: Convex hedging in incomplete markets. Appl. Math. Finance. 14(5), 437–452 (2007),

[32]

Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Proc.Appl. 121(2), 265–287 (2011a),

[33]

Soner, M.H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67) (2011b),

[34]

Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013),

[35]

Tangpi, L.: Dual Representation of Convex Increasing Functionals with Applications to Finance. PhD thesis, University of Konstanz (2015),

[36]

Wisniewski, A.: The structure of measurable mappings on metric spaces. Proc. A.M.S. 122(1), 147–150(1994),

show all references

References:
[1]

Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016),

[2]

Aliprantis, C.D., Border, K.C.:: Infinite Dimensional Analysis: a Hitchhiker’s Guide, 3rd ed. Springer(2006),

[3]

Arai, T.: Convex risk measures on orlicz spaces: inf-convolution and shortfall. Math. Finan. Econ. 3, 73– 88 (2010),

[4]

Bartl, D., Drapeau, S., Tangpi, L.: Computational aspects of robust optimized certainty equivalents and option pricing. Math. Finance. 30(1), 287–09 (2020),

[5]

Bartl, D., Kupper, M., Prömel, D.J., Tangpi, L.: Duality for pathwise superhedging in continuous time. Finance Stoch. 23(3), 697–728 (2019),

[6]

Bartl, D., Kupper, M., Neufeld, A.: Pathwise superhedging on prediction sets. Finance Stoch. 24, 215–48(2020),

[7]

Becherer, D., Kentia, K.: Good deal hedging and valuation under combined uncertainty about drift and volatility. Probab. Uncertain. Quant. Risk. 2(13) (2017),

[8]

Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices – a mass transport approach. Finance Stoch. 17(3), 477–501 (2013),

[9]

Ben-Tal, A., Taboulle, M.: An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance. 17, 449–476 (2007),

[10]

Bion-Nadal, J., Di Nunno, G.: Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞. Finance Stoch. 17(3), 587–613 (2013),

[11]

Bion-Nadal, J., Kervarec, M.: Risk Measuring under Model Uncertainty. Ann. Appl. Probab. 22(1), 213– 238 (2012),

[12]

Burzoni, M.: Arbitrage and hedging in model independent markets with frictions. SIAM J. Financial Math. 7(1), 812–844 (2016),

[13]

Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab. 27(3), 1452– 1477 (2017),

[14]

Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. Preprint (2015),

[15]

Cheridito, P., Kupper, M., Tangpi, L.: Duality formulas for robust pricing and hedging in discrete time.SIAM J. Financial Math. 8(1), 738–765 (2017),

[16]

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.Ann. 300(3), 463–520 (1994),

[17]

Dellacherie, C., Meyer, P.-A.:: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). Theory of martingales, Translated from the French by J. P. Wilson Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006),

[18]

Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab.Theory Relat. Fields. 160(1-2), 391–427 (2014),

[19]

Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953),

[20]

Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999),

[21]

Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000),

[22]

Hou, Z., Obłój, J.: On robust pricing-hedging duality in continuous time. Finance Stoch. 22(3), 511–567(2018),

[23]

Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the fatou property. Adv. Math.Econ. 9, 49–71 (2006),

[24]

Kaina, M., Rüschendorf, L.: On convex risk measures on lp-spaces. Math. Meth. Oper. Res. 69(3), 475– 495 (2009),

[25]

Karandikar, R.L.: On quadratic variation process of a continuous martingale. Illinois J. Math. 27, 178–181(1983),

[26]

Karatzas, I., Shreve, S.E.:: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics).Springer, New York (2004),

[27]

Kramkov, D., Schachermayer, W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Market. Ann. Appl. Probab. 9(3), 904–950 (1999),

[28]

Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math.Financ. Econ. 2(3), 189–210 (2009),

[29]

Neufeld, A., Nutz, M.: Superreplication under Volatility Uncertainty for Measurable Claims. Electron. J.Probab. 18(48), 1–14 (2013),

[30]

Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv Preprint 1002.4546(2010),

[31]

Rudloff, B.: Convex hedging in incomplete markets. Appl. Math. Finance. 14(5), 437–452 (2007),

[32]

Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Proc.Appl. 121(2), 265–287 (2011a),

[33]

Soner, M.H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67) (2011b),

[34]

Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013),

[35]

Tangpi, L.: Dual Representation of Convex Increasing Functionals with Applications to Finance. PhD thesis, University of Konstanz (2015),

[36]

Wisniewski, A.: The structure of measurable mappings on metric spaces. Proc. A.M.S. 122(1), 147–150(1994),

[1]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[20]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[Back to Top]