January  2020, 5: 7 doi: 10.1186/s41546-020-00049-8

Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions

1. Univ Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, Brest, France, and Shandong University, Jinan, China

2. Department of Mathematics, University of Central Florida, Orlando, Florida, United States

3. Department of Mathematics, University of Southern California, Los Angeles, California, United States

Received  March 11, 2020 Published  November 2020

We study fully nonlinear second-order (forward) stochastic PDEs. They can also be viewed as forward path-dependent PDEs and will be treated as rough PDEs under a unified framework. For the most general fully nonlinear case, we develop a local theory of classical solutions and then define viscosity solutions through smooth test functions. Our notion of viscosity solutions is equivalent to the alternative using semi-jets. Next, we prove basic properties such as consistency, stability, and a partial comparison principle in the general setting. If the diffusion coefficient is semilinear (i.e, linear in the gradient of the solution and nonlinear in the solution; the drift can still be fully nonlinear), we establish a complete theory, including global existence and a comparison principle.
Citation: Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8
References:
[1]

Buckdahn, R., I. Bulla, and J. Ma. (2011). On Pathwise Stochastic Taylor Expansions, Math. Control Relat. Fields 1, no. 4, 437-468.,

[2]

Buckdahn, R. and J. Li. (2008). Stochastic differential games and viscosity solutions of Hamilton-JacobiBellman-Isaacs equations, SIAM J. Control Optim. 47, no. 1, 444-475.,

[3]

Buckdahn, R. and J. Ma. (2001). Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I, Stoch. Process. Appl. 93, no. 2, 181-204.,

[4]

Buckdahn, R. and J. Ma. (2001). Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II, Stoch. Process. Appl. 93, no. 2, 205-228.,

[5]

Buckdahn, R. and J. Ma. (2002). Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs, Ann. Probab. 30, no. 3, 1131-1171.,

[6]

Buckdahn, R. and J. Ma. (2007). Pathwise stochastic control problems and stochastic HJB equations, SIAM J. Control Optim. 45, no. 6, 2224-2256.,

[7]

Buckdahn, R., J. Ma, and J. Zhang. (2015). Pathwise Taylor expansions for random fields on multiple dimensional paths, Stoch. Process. Appl. 125, 2820-2855.,

[8]

Caruana, M., P. Friz, and H. Oberhauser. (2011). A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 27-46.,

[9]

Crandall, M.G., H. Ishii, and P.-L. Lions. (1992). User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27, no. 1, 1-67.,

[10]

Da Prato, G. and L. Tubaro. (1996). Fully nonlinear stochastic partial differential equations, SIAM J. Math. Anal. 27, no. 1, 40-55.,

[11]

Davis, M. and G. Burstein. (1992). A Deterministic Approach To Stochastic Optimal Control With Application To Anticipative Control, Stochast. Stoch. Rep. 40, no. 3-4, 203-256.,

[12]

Diehl, J. and P. Friz. (2012). Backward stochastic differential equations with rough drivers, Ann. Prob. 40, 1715-1758.,

[13]

Diehl, J., P. Friz, and P. Gassiat. (2017). Stochastic control with rough paths, Appl. Math. Optim. 75, no. 2, 285-315.,

[14]

Diehl, J., P. Friz, and H. Oberhauser. (2014). Regularity theory for rough partial differential equations and parabolic comparison revisited, Springer, Cham.,

[15]

Diehl, J., H. Oberhauser, and S. Riedel. (2015). A Lévy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations, Stoch. Process. Appl. 125, no. 1, 161-181.,

[16]

Dupire, B. (2019). Functional Itô calculus, Quant. Finan. 19, no. 5, 721-729.,

[17]

Ekren, I., C. Keller, N. Touzi, and J. Zhang. (2014). On viscosity solutions of path dependent PDEs, Ann. Probab. 42, 204-236.,

[18]

Ekren, I., N. Touzi, and J. Zhang. (2016). Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part I, Ann. Probab. 44, 1212-1253.,

[19]

Ekren, I., N. Touzi, and J. Zhang. (2016). Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part II, Ann. Probab. 44, 2507-2553.,

[20]

Friz, P., P. Gassiat, P.L. Lions, and P.E. Souganidis. (2017). Eikonal equations and pathwise solutions to fully non-linear SPDEs, Stochast. Partial Differ. Equ. Anal. Comput. 5, 256-277.,

[21]

Friz, P. and M. Hairer. (2014). A course on rough paths:With an introduction to regularity structures, Universitext, Springer, Cham.,

[22]

Friz, P. and H. Oberhauser. (2011). On the splitting-up method for rough (partial) differential equations, J. Differ. Equ. 251, no. 2, 316-338.,

[23]

Friz, P. and H. Oberhauser. (2014). Rough path stability of (semi-)linear SPDEs, Probab. Theory Relat. Fields 158, 401-434.,

[24]

Gilbarg, D. and N. Trudinger. (1983). Elliptic Partial Differential Equations of second order, second edition, Springer-Verlag, Germany.,

[25]

Gubinelli, M. (2004). Controlling rough paths, J. Funct. Anal. 216, no. 1, 86-140.,

[26]

Gubinelli, M., S. Tindel, and I. Torrecilla. (2014). Controlled viscosity solutions of fully nonlinear rough PDEs. arXiv preprint, arXiv:1403.2832.,

[27]

Keller, C. and J. Zhang. (2016). Pathwise Itô calculus for rough paths and rough PDEs with path dependent coefficients, Stoch. Process. Appl. 126, 735-766.,

[28]

Krylov, N.V. (1999). An analytic approach to SPDEs, Stoch. Partial Differ. Equ. Six Perspect. Math. Surv. Monogr. Amer. Math. Soc. Providence RI 64, 185-242.,

[29]

Kunita, H. (1997). Stochastic flows and stochastic differential equations, Cambridge University Press, Cambridge.,

[30]

Lieberman, G. (1996). Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge.,

[31]

Lions, P.-L. and P. E. Souganidis. (1998). Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326, no. 9, 1085-1092.,

[32]

Lions, P.-L. and P. E. Souganidis. (1998). Fully nonlinear stochastic partial differential equations:nonsmooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327, no. 8, 735-741.,

[33]

Lions, P.-L. and P. E. Souganidis. (2000). Fully nonlinear stochastic PDE with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331, no. 8, 617-624.,

[34]

Lions, P.-L. and P.E. Souganidis. (2000). Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. l'Acad. Sci.-Ser. I-Math. 331, no. 10, 783-790.,

[35]

Lunardi, A. (1995). Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser Verlag, Basel.,

[36]

Lyons, T. (1998). Differential equations driven by rough signals, Rev. Mat. Iberoam. 14, no. 2, 215-310.,

[37]

Matoussi, A., D. Possamai, and W. Sabbagh. (2018). Probabilistic interpretation for solutions of Fully Nonlinear Stochastic PDEs, Probab. Theory Relat. Fields. https://doi.org/10.1007/s00440-018-0859-4.,

[38]

Mikulevicius, R. and G. Pragarauskas. (1994). Classical solutions of boundary value problems for some nonlinear integro-differential equations, Lithuanian Math. J. 34, no. 3, 275-287.,

[39]

Musiela, M. and T. Zariphopoulou. (2010). Stochastic partial differential equations and portfolio choice, Contemporary Quantitative Finance, Springer, Berlin.,

[40]

Nadirashvili, N. and S. Vladut. (2007). Nonclassical solutions of fully nonlinear elliptic equations, Geom. Funct. Anal. 17, no. 4, 1283-1296.,

[41]

Pardoux, E. and S. Peng. (1994). Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Relat. Fields 98, 209-227.,

[42]

Peng, S. (1992). Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim 30, no. 2, 284- 304.,

[43]

Pham, T. and J. Zhang. (2014). Two Person Zero-sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation, SIAM J. Control. Optim. 52, 2090-2121.,

[44]

Rozovskii, B.L. (1990). Stochastic Evolution Systems:Linear Theory and Applications to Non-linear Filtering, Kluwer Academic Publishers, Boston.,

[45]

Safonov, M.V. (1988). Boundary value problems for second-order nonlinear parabolic equations, (Russian), Funct. Numer. Methods Math. Phys. "Naukova Dumka" Kiev. 274, 99-203.,

[46]

Safonov, M.V. (1989). Classical solution of second-order nonlinear elliptic equations, Math. USSR-Izv 33, no. 3, 597-612.,

[47]

Seeger, B. (2018). Perron's method for pathwise viscosity solutions, Commun. Partial Differ. Equ. 43, no. 6, 998-1018.,

[48]

Seeger, B. (2018). Homogenization of pathwise Hamilton-Jacobi equations, J. Math. Pures Appl. 110, 1-31.,

[49]

Seeger, B. (2020). Approximation schemes for viscosity solutions of fully nonlinear stochastic partial differential equations, Ann. Appl. Probab. 30, no. 4, 1784-1823.,

[50]

Souganidis, P.E. (2019). Pathwise solutions for fully nonlinear first- and second-order partial differential equations with multiplicative rough time dependence, Singular random dynamics, Lecture Notes in Math. vol. 2253, Springer, Cham.,

[51]

Zhang, J. (2017). Backward Stochastic Differential Equations-from linear to fully nonlinear theory, Springer, New York.,

show all references

References:
[1]

Buckdahn, R., I. Bulla, and J. Ma. (2011). On Pathwise Stochastic Taylor Expansions, Math. Control Relat. Fields 1, no. 4, 437-468.,

[2]

Buckdahn, R. and J. Li. (2008). Stochastic differential games and viscosity solutions of Hamilton-JacobiBellman-Isaacs equations, SIAM J. Control Optim. 47, no. 1, 444-475.,

[3]

Buckdahn, R. and J. Ma. (2001). Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I, Stoch. Process. Appl. 93, no. 2, 181-204.,

[4]

Buckdahn, R. and J. Ma. (2001). Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II, Stoch. Process. Appl. 93, no. 2, 205-228.,

[5]

Buckdahn, R. and J. Ma. (2002). Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs, Ann. Probab. 30, no. 3, 1131-1171.,

[6]

Buckdahn, R. and J. Ma. (2007). Pathwise stochastic control problems and stochastic HJB equations, SIAM J. Control Optim. 45, no. 6, 2224-2256.,

[7]

Buckdahn, R., J. Ma, and J. Zhang. (2015). Pathwise Taylor expansions for random fields on multiple dimensional paths, Stoch. Process. Appl. 125, 2820-2855.,

[8]

Caruana, M., P. Friz, and H. Oberhauser. (2011). A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 27-46.,

[9]

Crandall, M.G., H. Ishii, and P.-L. Lions. (1992). User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27, no. 1, 1-67.,

[10]

Da Prato, G. and L. Tubaro. (1996). Fully nonlinear stochastic partial differential equations, SIAM J. Math. Anal. 27, no. 1, 40-55.,

[11]

Davis, M. and G. Burstein. (1992). A Deterministic Approach To Stochastic Optimal Control With Application To Anticipative Control, Stochast. Stoch. Rep. 40, no. 3-4, 203-256.,

[12]

Diehl, J. and P. Friz. (2012). Backward stochastic differential equations with rough drivers, Ann. Prob. 40, 1715-1758.,

[13]

Diehl, J., P. Friz, and P. Gassiat. (2017). Stochastic control with rough paths, Appl. Math. Optim. 75, no. 2, 285-315.,

[14]

Diehl, J., P. Friz, and H. Oberhauser. (2014). Regularity theory for rough partial differential equations and parabolic comparison revisited, Springer, Cham.,

[15]

Diehl, J., H. Oberhauser, and S. Riedel. (2015). A Lévy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations, Stoch. Process. Appl. 125, no. 1, 161-181.,

[16]

Dupire, B. (2019). Functional Itô calculus, Quant. Finan. 19, no. 5, 721-729.,

[17]

Ekren, I., C. Keller, N. Touzi, and J. Zhang. (2014). On viscosity solutions of path dependent PDEs, Ann. Probab. 42, 204-236.,

[18]

Ekren, I., N. Touzi, and J. Zhang. (2016). Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part I, Ann. Probab. 44, 1212-1253.,

[19]

Ekren, I., N. Touzi, and J. Zhang. (2016). Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs:Part II, Ann. Probab. 44, 2507-2553.,

[20]

Friz, P., P. Gassiat, P.L. Lions, and P.E. Souganidis. (2017). Eikonal equations and pathwise solutions to fully non-linear SPDEs, Stochast. Partial Differ. Equ. Anal. Comput. 5, 256-277.,

[21]

Friz, P. and M. Hairer. (2014). A course on rough paths:With an introduction to regularity structures, Universitext, Springer, Cham.,

[22]

Friz, P. and H. Oberhauser. (2011). On the splitting-up method for rough (partial) differential equations, J. Differ. Equ. 251, no. 2, 316-338.,

[23]

Friz, P. and H. Oberhauser. (2014). Rough path stability of (semi-)linear SPDEs, Probab. Theory Relat. Fields 158, 401-434.,

[24]

Gilbarg, D. and N. Trudinger. (1983). Elliptic Partial Differential Equations of second order, second edition, Springer-Verlag, Germany.,

[25]

Gubinelli, M. (2004). Controlling rough paths, J. Funct. Anal. 216, no. 1, 86-140.,

[26]

Gubinelli, M., S. Tindel, and I. Torrecilla. (2014). Controlled viscosity solutions of fully nonlinear rough PDEs. arXiv preprint, arXiv:1403.2832.,

[27]

Keller, C. and J. Zhang. (2016). Pathwise Itô calculus for rough paths and rough PDEs with path dependent coefficients, Stoch. Process. Appl. 126, 735-766.,

[28]

Krylov, N.V. (1999). An analytic approach to SPDEs, Stoch. Partial Differ. Equ. Six Perspect. Math. Surv. Monogr. Amer. Math. Soc. Providence RI 64, 185-242.,

[29]

Kunita, H. (1997). Stochastic flows and stochastic differential equations, Cambridge University Press, Cambridge.,

[30]

Lieberman, G. (1996). Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge.,

[31]

Lions, P.-L. and P. E. Souganidis. (1998). Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326, no. 9, 1085-1092.,

[32]

Lions, P.-L. and P. E. Souganidis. (1998). Fully nonlinear stochastic partial differential equations:nonsmooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327, no. 8, 735-741.,

[33]

Lions, P.-L. and P. E. Souganidis. (2000). Fully nonlinear stochastic PDE with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331, no. 8, 617-624.,

[34]

Lions, P.-L. and P.E. Souganidis. (2000). Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. l'Acad. Sci.-Ser. I-Math. 331, no. 10, 783-790.,

[35]

Lunardi, A. (1995). Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser Verlag, Basel.,

[36]

Lyons, T. (1998). Differential equations driven by rough signals, Rev. Mat. Iberoam. 14, no. 2, 215-310.,

[37]

Matoussi, A., D. Possamai, and W. Sabbagh. (2018). Probabilistic interpretation for solutions of Fully Nonlinear Stochastic PDEs, Probab. Theory Relat. Fields. https://doi.org/10.1007/s00440-018-0859-4.,

[38]

Mikulevicius, R. and G. Pragarauskas. (1994). Classical solutions of boundary value problems for some nonlinear integro-differential equations, Lithuanian Math. J. 34, no. 3, 275-287.,

[39]

Musiela, M. and T. Zariphopoulou. (2010). Stochastic partial differential equations and portfolio choice, Contemporary Quantitative Finance, Springer, Berlin.,

[40]

Nadirashvili, N. and S. Vladut. (2007). Nonclassical solutions of fully nonlinear elliptic equations, Geom. Funct. Anal. 17, no. 4, 1283-1296.,

[41]

Pardoux, E. and S. Peng. (1994). Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Relat. Fields 98, 209-227.,

[42]

Peng, S. (1992). Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim 30, no. 2, 284- 304.,

[43]

Pham, T. and J. Zhang. (2014). Two Person Zero-sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation, SIAM J. Control. Optim. 52, 2090-2121.,

[44]

Rozovskii, B.L. (1990). Stochastic Evolution Systems:Linear Theory and Applications to Non-linear Filtering, Kluwer Academic Publishers, Boston.,

[45]

Safonov, M.V. (1988). Boundary value problems for second-order nonlinear parabolic equations, (Russian), Funct. Numer. Methods Math. Phys. "Naukova Dumka" Kiev. 274, 99-203.,

[46]

Safonov, M.V. (1989). Classical solution of second-order nonlinear elliptic equations, Math. USSR-Izv 33, no. 3, 597-612.,

[47]

Seeger, B. (2018). Perron's method for pathwise viscosity solutions, Commun. Partial Differ. Equ. 43, no. 6, 998-1018.,

[48]

Seeger, B. (2018). Homogenization of pathwise Hamilton-Jacobi equations, J. Math. Pures Appl. 110, 1-31.,

[49]

Seeger, B. (2020). Approximation schemes for viscosity solutions of fully nonlinear stochastic partial differential equations, Ann. Appl. Probab. 30, no. 4, 1784-1823.,

[50]

Souganidis, P.E. (2019). Pathwise solutions for fully nonlinear first- and second-order partial differential equations with multiplicative rough time dependence, Singular random dynamics, Lecture Notes in Math. vol. 2253, Springer, Cham.,

[51]

Zhang, J. (2017). Backward Stochastic Differential Equations-from linear to fully nonlinear theory, Springer, New York.,

[1]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

[Back to Top]