January  2020, 5: 1 doi: 10.1186/s41546-020-0043-5

Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting

Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France

Received  March 08, 2019 Published  February 2020

We use the functional Itô calculus to prove that the solution of a BSDE with singular terminal condition verifies at the terminal time: lim inftT Y (t) = ξ = Y (T). Hence, we extend known results for a non-Markovian terminal condition.
Citation: Dmytro Marushkevych, Alexandre Popier. Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 1-. doi: 10.1186/s41546-020-0043-5
References:
[1]

Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913.,

[2]

Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699.,

[3]

Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172.,

[4]

Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona.,

[5]

Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61.,

[6]

Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133.,

[7]

Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882.,

[8]

Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann.,

[9]

Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps.,

[10]

Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS.,

[11]

Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711.,

[12]

Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539.,

[13]

Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592.,

[14]

Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227.,

[15]

Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9.,

[16]

Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056.,

[17]

Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509.,

[18]

Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability.,

[19]

Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357.,

[20]

Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006.,

show all references

References:
[1]

Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913.,

[2]

Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699.,

[3]

Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172.,

[4]

Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona.,

[5]

Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61.,

[6]

Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133.,

[7]

Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882.,

[8]

Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann.,

[9]

Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps.,

[10]

Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS.,

[11]

Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711.,

[12]

Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539.,

[13]

Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592.,

[14]

Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227.,

[15]

Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9.,

[16]

Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056.,

[17]

Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509.,

[18]

Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability.,

[19]

Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357.,

[20]

Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006.,

[1]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[2]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[3]

Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5

[4]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[5]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[6]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[7]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[8]

Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5285-5315. doi: 10.3934/dcds.2015.35.5285

[9]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[10]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control & Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

[11]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[12]

Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$-scheme for solving backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1585-1603. doi: 10.3934/dcdsb.2012.17.1585

[13]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[14]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[15]

Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697

[16]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control & Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[17]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[18]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[19]

Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297

[20]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (13)
  • Cited by (0)

Other articles
by authors

[Back to Top]