January  2020, 5: 1 doi: 10.1186/s41546-020-0043-5

Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting

Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France

Received  March 08, 2019 Published  February 2020

We use the functional Itô calculus to prove that the solution of a BSDE with singular terminal condition verifies at the terminal time: lim inftT Y (t) = ξ = Y (T). Hence, we extend known results for a non-Markovian terminal condition.
Citation: Dmytro Marushkevych, Alexandre Popier. Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 1-. doi: 10.1186/s41546-020-0043-5
References:
[1]

Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913. Google Scholar

[2]

Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699. Google Scholar

[3]

Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172. Google Scholar

[4]

Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona. Google Scholar

[5]

Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61. Google Scholar

[6]

Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133. Google Scholar

[7]

Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882. Google Scholar

[8]

Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann. Google Scholar

[9]

Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps. Google Scholar

[10]

Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS. Google Scholar

[11]

Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711. Google Scholar

[12]

Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539. Google Scholar

[13]

Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592. Google Scholar

[14]

Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227. Google Scholar

[15]

Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9. Google Scholar

[16]

Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056. Google Scholar

[17]

Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509. Google Scholar

[18]

Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability. Google Scholar

[19]

Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357. Google Scholar

[20]

Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006. Google Scholar

show all references

References:
[1]

Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913. Google Scholar

[2]

Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699. Google Scholar

[3]

Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172. Google Scholar

[4]

Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona. Google Scholar

[5]

Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61. Google Scholar

[6]

Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133. Google Scholar

[7]

Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882. Google Scholar

[8]

Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann. Google Scholar

[9]

Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps. Google Scholar

[10]

Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS. Google Scholar

[11]

Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711. Google Scholar

[12]

Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539. Google Scholar

[13]

Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592. Google Scholar

[14]

Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227. Google Scholar

[15]

Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9. Google Scholar

[16]

Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056. Google Scholar

[17]

Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509. Google Scholar

[18]

Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability. Google Scholar

[19]

Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357. Google Scholar

[20]

Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006. Google Scholar

[1]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[2]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[3]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[7]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[10]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[11]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[12]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[16]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388

[17]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[18]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[19]

Sel Ly, Nicolas Privault. Stochastic ordering by g-expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 61-98. doi: 10.3934/puqr.2021004

[20]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

 Impact Factor: 

Metrics

  • PDF downloads (21)
  • HTML views (182)
  • Cited by (0)

Other articles
by authors

[Back to Top]