January  2020, 5: 1 doi: 10.1186/s41546-020-0043-5

Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting

Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France

Received  March 08, 2019 Published  February 2020

We use the functional Itô calculus to prove that the solution of a BSDE with singular terminal condition verifies at the terminal time: lim inftT Y (t) = ξ = Y (T). Hence, we extend known results for a non-Markovian terminal condition.
Citation: Dmytro Marushkevych, Alexandre Popier. Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 1-. doi: 10.1186/s41546-020-0043-5
References:
[1]

Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913.,

[2]

Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699.,

[3]

Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172.,

[4]

Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona.,

[5]

Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61.,

[6]

Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133.,

[7]

Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882.,

[8]

Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann.,

[9]

Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps.,

[10]

Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS.,

[11]

Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711.,

[12]

Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539.,

[13]

Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592.,

[14]

Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227.,

[15]

Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9.,

[16]

Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056.,

[17]

Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509.,

[18]

Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability.,

[19]

Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357.,

[20]

Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006.,

show all references

References:
[1]

Ankirchner, S., M. Jeanblanc, and T. Kruse. (2014). BSDEs with Singular Terminal Condition and a Control Problem with Constraints, SIAM J. Control Optim. 52, no. 2, 893–913.,

[2]

Bank, P. and M. Voß. (2018). Linear quadratic stochastic control problems with stochastic terminal constraint, SIAM J. Control Optim. 56, no. 2, 672–699.,

[3]

Bouchard, B., D. Possamaï, X. Tan, and C. Zhou. (2018). A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Ann. Inst. Henri Poincaré, Probab. Stat. 54, no. 1, 154–172.,

[4]

Cont, R. (2016). Functional Itô calculus and functional Kolmogorov equations, Birkhäuser/Springer, CRM Barcelona.,

[5]

Cont, R. and D.-A. Fournié. (2010). A functional extension of the Ito formula, C. R. Math. Acad. Sci. Paris. 348, no. 1–2, 57–61.,

[6]

Cont, R. and D.-A. Fournié. (2013). Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41, no. 1, 109–133.,

[7]

Cont, R. and Y. Lu. (2016). Weak approximation of martingale representations, Stoch. Process. Appl. 126, no. 3, 857–882.,

[8]

Dellacherie, C. and P.-A. Meyer. (1980). Probabilités et potentiel. Théorie des martingales, Chapitres V à VIII, Hermann.,

[9]

Delong, Ł. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications, European Actuarial Academy (EAA) Series, Springer, London. BSDEs with jumps.,

[10]

Dupire, B. (2009). Functional Itô calculus, Bloomberg Portfolio Research Paper No 2009-04-FRONTIERS.,

[11]

Graewe, P., U. Horst, and J. Qiu. (2015). A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions, SIAM J. Control Optim. 53, no. 2, 690–711.,

[12]

Kruse, T. and A. Popier. (2016). BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 88, no. 4, 491–539.,

[13]

Kruse, T. and A. Popier. (2016). Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting, Stoch. Process. Appl. 126, no. 9, 2554–2592.,

[14]

Kruse, T. and A. Popier. (2017). Lp-solution for BSDEs with jumps in the case p < 2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics 89, no. 8, 1201–1227.,

[15]

Pardoux, E. and A. Rascanu. (2014). Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, Springer-Verlag. https://doi.org/10.1007/978-3-319-05714-9.,

[16]

Popier, A. (2006). Backward stochastic differential equations with singular terminal condition, Stoch.Process. Appl 116, no. 12, 2014–2056.,

[17]

Popier, A. (2016). Limit behaviour of bsde with jumps and with singular terminal condition, ESAIM: PS 20, 480–509.,

[18]

Protter, P.E. (2004). Stochastic integration and differential equations, volume 21 of Applications of Mathematics (New York), second edition, Springer-Verlag, Berlin. Stochastic Modelling and Applied Probability.,

[19]

Quenez, M.-C. and A. Sulem. (2013). BSDEs with jumps, optimization and applications to dynamic risk measures, Stoch. Process. Appl. 123, no. 8, 3328–3357.,

[20]

Sezer, A.D., T. Kruse, and A. Popier. (2019). Backward stochastic differential equations with nonMarkovian singular terminal values, Stoch. Dyn. 19, no. 2, 1950006.,

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[20]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[Back to Top]