[1]
|
RBniCS - Reduced order modelling in FEniCS, Available from: http://mathlab.sissa.it/rbnics.
|
[2]
|
Multiphenics - Easy prototyping of multiphysics problems in FEniCS, Available from: http://mathlab.sissa.it/multiphenics.
|
[3]
|
R. Abgrall, D. Amsallem and R. Crisovan, Robust model reduction by ${L}^1$-norm minimization and approximation via dictionaries: Application to nonlinear hyperbolic problems, Advanced Modeling and Simulation in Engineering Sciences, 3 (2016), 1.
|
[4]
|
N. Cagniart, R. Crisovan, Y. Maday and R. Abgrall, Model order reduction for hyperbolic problems: A new framework, preprint, (2017), hal: 01583224.
|
[5]
|
F. Ballarin, A. Manzoni, A. Quarteroni and G. Rozza, Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations, International Journal for Numerical Methods in Engineering, 102 (2015), 1136-1161.
doi: 10.1002/nme.4772.
|
[6]
|
F. Ballarin and G. Rozza, POD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems, International Journal for Numerical Methods in Fluids, 82 (2016), 1010-1034.
doi: 10.1002/fld.4252.
|
[7]
|
F. Ballarin, G. Rozza and Y. Maday, Reduced-order semi-implicit schemes for fluid-structure interaction problems, Model Reduction of Parametrized Systems, MS & A. Model. Simul. Appl., Springer, Cham, 17 (2017), 149-167.
|
[8]
|
F. Bernard, A. Iollo and S. Riffaud, Reduced-order model for the BGK equation based on POD and optimal transport, Journal of Computational Physics, 373 (2018), 545-570.
doi: 10.1016/j.jcp.2018.07.001.
|
[9]
|
L. Bertagna and A. Veneziani, A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid–structure interaction problem, Inverse Problems, 30, (2014), 055006, 23 pp.
doi: 10.1088/0266-5611/30/5/055006.
|
[10]
|
W.-J. Beyn and V. Thümmler, Freezing solutions of equivariant evolution equations, SIAM Journal on Applied Dynamical Systems, 3 (2004), 85-116.
doi: 10.1137/030600515.
|
[11]
|
N. Cagniart, A Few Non Linear Approaches in Model Order Reduction, Ph.D thesis, École Doctorale De Sciences Mathématiques De Paris Centre, 2018.
|
[12]
|
N. Cagniart, Y. Maday and B. Stamm, Model order reduction for problems with large convection effects, Contributions to Partial Differential Equations and Applications, 47 (2019), 131-150.
|
[13]
|
K. Carlberg, Adaptive $h$-refinement for reduced-order models, International Journal for Numerical Methods in Engineering, 102 (2015), 1192-1210.
doi: 10.1002/nme.4800.
|
[14]
|
A. Cohen and R. DeVore, Kolmogorov widths under holomorfic mappings, IMA Journal of Numerical Analysis, 36 (2015), 1-12.
doi: 10.1093/imanum/dru066.
|
[15]
|
C. M. Colciago and S. Deparis, Reduced order models for fluid-structure interaction problems with applications in haemodynamics, preprint, (2018), arXiv: 1801.06127.
|
[16]
|
V. Ehrlacher, D. Lombardi, O. Mula and F. Vialard, Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM: M2AN, 54 (2020), 2159-2197.
doi: 10.1051/m2an/2020013.
|
[17]
|
A. Ferrero, T. Taddei and L. Zhang, Registration-based model reduction of parameterized two-dimensional conservation laws, Journal of Computational Physics, 457 (2022), 111068, 22 pp.
doi: 10.1016/j.jcp.2022.111068.
|
[18]
|
J.-F. Gerbeau, D. Lombardi and E. Schenone, Reduced order model in cardiac electrophysiology with approximated Lax Pairs, Advances in Computational Mathematics, 41 (2015), 1103-1130.
doi: 10.1007/s10444-014-9393-9.
|
[19]
|
J. F. Gerbeau and L. Damiano, Approximated Lax Pairs for the reduced order integration of nonlinear evolution equations, Journal of Computational Physics, 265 (2014), 246-269.
doi: 10.1016/j.jcp.2014.01.047.
|
[20]
|
C. Greif and K. Urban, Decay of the Kolmogorov N-width for wave problems, Applied Mathematics Letters, 96 (2019), 216-222.
doi: 10.1016/j.aml.2019.05.013.
|
[21]
|
M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engeneering, Academic Press, 1982.
|
[22]
|
B. Haasdonk, Reduced basis methods for parametrized PDEs – A tutorial introduction for stationary and instationary problems, Model Reduction and Approximation 2017, Siam, (2017), 65-136.
|
[23]
|
B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, M2AN Math. Model. Numer. Anal., 42 (2008), 277-302.
doi: 10.1051/m2an:2008001.
|
[24]
|
J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics. BCAM SpringerBriefs. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2016.
doi: 10.1007/978-3-319-22470-1.
|
[25]
|
A. Iollo and D. Lombardi, Advection modes by optimal mass transfer, Phys. Rev. E, 89 (2014), 022923.
|
[26]
|
E. N. Karatzas, F. Ballarin and G. Rozza, Projection-based reduced order models for a cut finite element method in parametrized domains, Comput. Math. Appl., 79 (2020), 833-851.
doi: 10.1016/j.camwa.2019.08.003.
|
[27]
|
K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM Journal on Numerical Analysis, 40 (2002), 492-515.
doi: 10.1137/S0036142900382612.
|
[28]
|
T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Model order reduction in fluid dynamics: Challenges and perspectives, Reduced Order Methods for Modeling and Computational Reduction, Springer International Publishing, 9 (2014), 235-273.
doi: 10.1007/978-3-319-02090-7_9.
|
[29]
|
T. Lassila, A. Quarteroni and G. Rozza, A reduced basis model with parametric coupling for fluid-structure interaction problems, SIAM Journal on Scientific Computing, 34 (2012), A1187-A1213.
doi: 10.1137/110819950.
|
[30]
|
K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, Journal of Computational Physics, 404 (2020), 108973, 32 pp.
doi: 10.1016/j.jcp.2019.108973.
|
[31]
|
A. Logg, K. A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer-Verlag, Berlin, 2012.
|
[32]
|
J. M. Melenk, On n-widths for elliptic problems, Journal of Mathematical Analysis and Applications, 247 (2000), 272-289.
doi: 10.1006/jmaa.2000.6862.
|
[33]
|
S. Sy and C. Murea, Algorithm for solving fluid–structure interaction problem on a global moving mesh, Coupled Systems Mechanics, 1 (2012).
|
[34]
|
C. M. Murea and S. Sy, A fast method for solving fluid–structure interaction problems numerically, International Journal for Numerical Methods in Fluids, 60 (2009), 1149-1172.
doi: 10.1002/fld.1931.
|
[35]
|
N. J. Nair and M. Balajewicz, Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter-dependent shocks, International Journal for Numerical Methods in Engineering, 117 (2019), 1234-1262.
doi: 10.1002/nme.5998.
|
[36]
|
N.-C. Nguyen, G. Rozza and A. T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers' equation, Calcolo, 46 (2009), 157-185.
doi: 10.1007/s10092-009-0005-x.
|
[37]
|
M. Nonino, F. Ballarin and G. Rozza, A monolithic and a partitioned, reduced basis method for fluid-structure interaction problems, Fluids, 6 (2021), 229.
|
[38]
|
M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing, Comptes Rendus Mathematique, 351 (2013), 901-906.
doi: 10.1016/j.crma.2013.10.028.
|
[39]
|
M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future challenges, Proceedings of the Conference Algoritmy, (2016), 1-12.
|
[40]
|
B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, SIAM Journal on Scientific Computing, 42 (2020), A2803-A2836.
doi: 10.1137/19M1257275.
|
[41]
|
A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, Handbook of Numerical Analysis, 12 (2004), 3-127.
|
[42]
|
A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: Problems, models and methods, Computing and Visualization in Science, 2 (2000), 163-197.
|
[43]
|
J. Reiss, P. Schulze, J. Sesterhenn and V. Mehrmann, The shifted proper orthogonal decomposition: A mode decomposition for multiple transport phenomena, SIAM Journal on Scientific Computing, 40 (2018), A1322-A1344.
doi: 10.1137/17M1140571.
|
[44]
|
T. Richter, Fluid–Structure Interactions. Model, Analysis and Finite Element, Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2017.
|
[45]
|
C. W. Rowley, I. G. Kevrekidis, J. E. Marsden and K. Lust, Reduction and reconstruction for self-similar dynamical systems, Nonlinearity, 16 (2003), 1257-1275.
doi: 10.1088/0951-7715/16/4/304.
|
[46]
|
G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Meth. Eng., 15 (2008), 229-275.
doi: 10.1007/s11831-008-9019-9.
|
[47]
|
T. Taddei and L. Zhang, Space-time registration-based model reduction of parameterized one-dimensional hyperbolic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, 55 (2021), 99-130.
doi: 10.1051/m2an/2020073.
|
[48]
|
T. Taddei and L. Zhang, Registration-based model reduction in complex two-dimensional geometries, Journal of Scientific Computing, 88 (2021), Paper No. 79, 25 pp.
doi: 10.1007/s10915-021-01584-y.
|
[49]
|
D. Torlo, Model reduction for advection dominated hyperbolic problems in an ALE framework: Offline and online phases, preprint, (2020), arXiv: 2003.13735.
|
[50]
|
G. Welper, H and HP-adaptive interpolation by transformed snapshots for parametric and stochastic hyperbolic PDEs, preprint, (2017), arXiv: 1710.11481.
|
[51]
|
G. Welper, Interpolation of functions with parameter dependent jumps by transformed snapshots, SIAM Journal on Scientific Computing, 39 (2017), A1225-A1250.
doi: 10.1137/16M1059904.
|
[52]
|
G. Welper, Transformed snapshot interpolation with high resolution transforms, SIAM Journal on Scientific Computing, 42 (2020), A2037-A2061.
doi: 10.1137/19M126356X.
|