[1]
|
M. Belkin, T. Matveeva and P. Niyogi, Regularization and semi-supervised learning on large graphs, Learning Theory, Lecture Notes in Comput. Sci., Springer, Berlin, Heidelberg, 3120 (2004), 624-638.
doi: 10.1007/978-3-540-27819-1_43.
|
[2]
|
L. Bergamaschi and M. Vianello, Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl., 7 (2000), 27-45.
doi: 10.1002/(SICI)1099-1506(200001/02)7:1<27::AID-NLA185>3.0.CO;2-4.
|
[3]
|
R. Cavoretto, A. De Rossi and W. Erb., Partition of unity methods for signal processing on graphs, J. Fourier Anal. Appl., 27 (2021), Paper No. 66, 29 pp.
doi: 10.1007/s00041-021-09871-w.
|
[4]
|
R. Cavoretto, A. De Rossi and W. Erb., GBFPUM - A MATLAB package for partition of unity based signal interpolation and approximation on graphs, J. Fourier Anal. Appl., 15 (2022), 25-34.
|
[5]
|
R. Coifman and M. Maggioni., Diffusion wavelets, Appl. Comput. Harmonic Anal., 21 (2006), 53-94.
doi: 10.1016/j.acha.2006.04.004.
|
[6]
|
S. Cuomo, W. Erb and G. Santin, Kernel-Based Models for Influence Maximization on Graphs based on Gaussian Process Variance Minimization, J. Comput. Appl. Math., 423 (2023), 114951.
doi: 10.1016/j.cam.2022.114951.
|
[7]
|
R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, Heidelberg, 1993.
|
[8]
|
S. Elsworth and S. Güttel, The block rational Arnoldi method, SIAM Journal on Matrix Analysis and Applications, 41 (2020), 365-388.
doi: 10.1137/19M1245505.
|
[9]
|
W. Erb, Graph signal interpolation with positive definite graph basis functions, Appl. Comput. Harmon. Anal., 60 (2022), 368-395.
doi: 10.1016/j.acha.2022.03.005.
|
[10]
|
W. Erb, Semi-supervised learning on graphs with feature-augmented graph basis functions, preprint, 2020, arXiv: 2003.07646.
|
[11]
|
W. Erb, Graph wedgelets: Adaptive data compression on graphs based on binary wedge partitioning trees and geometric wavelets, IEEE Transactions on Signal and Information Processing over Networks, 9 (2023), 24-34.
doi: 10.1109/tsipn.2023.3240899.
|
[12]
|
A. Frommer, K. Lund and D. B. Szyld, Block Krylov subspace methods for functions of matrices, Electron. Trans. Numer. Anal., 47 (2017), 100-126.
doi: 10.1553/etna_vol47s100.
|
[13]
|
E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SlAM J. Sci. Statist. Comput., 13 (1992), 1236-1264.
doi: 10.1137/0913071.
|
[14]
|
C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0163-9.
|
[15]
|
M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: An introduction, Modern Mathematical Models, Methods and Algorithms for Real World Systems, Anshan Ltd, 2006/2007,420-447.
|
[16]
|
M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential, SIAM J. Numer. Anal., 34 (1997), 1911-1925.
doi: 10.1137/S0036142995280572.
|
[17]
|
K. Jbilou, A. Messaoudi and H. Sadok, Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math., 31 (1999), 49-63.
doi: 10.1016/S0168-9274(98)00094-4.
|
[18]
|
R. I. Kondor and J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, Proc. of the 19th. Intern. Conf. on Machine Learning ICML02, 2002,315-322.
|
[19]
|
J. Liesen and Z. Strakos, Krylov Subspace Methods: Principles and Analysis, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013.
|
[20]
|
L. Lopez and V. Simoncini, Preserving geometric properties of the exponential matrix by block Krylov subspace methods, BIT, 46 (2006), 813-830.
doi: 10.1007/s10543-006-0096-6.
|
[21]
|
K. Lund, A New Block Krylov Subspace Framework with Applications to Functions of Matrices Acting on Multiple Vectors, Ph.D thesis, Temple University, 2018.
|
[22]
|
C. Musco, C. Musco and A. Sidford, Stability of the Lanczos method for matrix function approximation, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2018, 1605-1624.
doi: 10.1137/1.9781611975031.105.
|
[23]
|
I. P. Natanson, Constructive Function Theory. Vol. I. Uniform Approximation, Frederick Ungar Publishing, New York, 1964.
|
[24]
|
B. N. Parlett, The Symmetric Eigenvalue Problem, Corrected reprint of the 1980 original. Classics in Applied Mathematics, 20. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
doi: 10.1137/1.9781611971163.
|
[25]
|
I. Z. Pesenson, Variational Splines and Paley-Wiener Spaces on Combinatorial Graphs, Constr. Approx., 29 (2009), 1-21.
doi: 10.1007/s00365-007-9004-9.
|
[26]
|
R. Rifkin, G. Yeo and T. Poggio, Regularized least-squares classification, Nato Science Series Sub Series III Computer and SystemsSciences, 190 (2003), 131-154.
|
[27]
|
D. Romero, M. Ma and G. B. Giannakis, Kernel-Based Reconstruction of Graph Signals, IEEE Transactions on Signal Processing, 65 (2017), 764-778.
doi: 10.1109/TSP.2016.2620116.
|
[28]
|
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1992), 209-228.
doi: 10.1137/0729014.
|
[29]
|
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, 2003.
doi: 10.1137/1.9780898718003.
|
[30]
|
T. Schmelzer, Block Krylov Methods for Hermitian Linear Systems, Master's thesis, University of Kaiserslautern, 2004.
|
[31]
|
B. Schölkopf and A. Smola, Learning with Kernels, MIT Press, Cambridge, 2002.
|
[32]
|
D. I. Shuman, Localized spectral graph filter frames: A unifying framework, survey of design considerations, and numerical comparison, IEEE Sig. Proc. Mag, 37 (2020), 43-63.
|
[33]
|
D. I. Shuman, B. Ricaud and P. Vandergheynst, Vertex-frequency analysis on graphs, Appl. Comput. Harm. Anal., 40 (2016), 260-291.
doi: 10.1016/j.acha.2015.02.005.
|
[34]
|
V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems with multiple right-hand sides, SIAM J. Sci. Comput., 16 (1995), 917-933.
doi: 10.1137/0916053.
|
[35]
|
V. Simoncini and E. Gallopoulos, Convergence properties of block GMRES and matrix polynomials, Linear Algebra Appl., 247 (1996), 97-119.
|
[36]
|
A. Smola and R. I. Kondor, Kernels and regularization on graphs, Learning Theory and Kernel Machines, Springer, Berlin, Heidelberg, 2003,144-158.
|
[37]
|
D. E. Stewart and T. S. Leyk, Error estimates for Krylov subspace approximations of matrix exponentials, J. Comput. Appl. Math., 72 (1996), 359-369.
doi: 10.1016/0377-0427(96)00006-4.
|
[38]
|
L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
|
[39]
|
V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
|
[40]
|
J. P. Ward, F. J. Narcowich and J. D. Ward, Interpolating splines on graphs for data science applications, Appl. Comput. Harmon. Anal., 49 (2020), 540-557.
doi: 10.1016/j.acha.2020.06.001.
|
[41]
|
X. Zhu, Semi-Supervised Learning with Graphs, Ph.D thesis, Carnegie Mellon University, 2005.
|