\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A reduced basis stabilization for the unsteady Stokes and Navier-Stokes equations

  • *Corresponding author: Gianluigi Rozza

    *Corresponding author: Gianluigi Rozza
Abstract / Introduction Full Text(HTML) Figure(8) / Table(3) Related Papers Cited by
  • In the Reduced Basis approximation of Stokes and Navier-Stokes problems, the Galerkin projection on the reduced spaces does not necessarily preserve the inf-sup stability even if the snapshots were generated through a stable full order method. Therefore, in this work we aim at building a stabilized Reduced Basis (RB) method for the approximation of unsteady Stokes and Navier-Stokes problems in parametric reduced order settings. This work extends the results presented for parametrized steady Stokes and Navier-Stokes problems in a work of ours [1]. We apply classical residual-based stabilization techniques for finite element methods in full order, and then the RB method is introduced as Galerkin projection onto RB space. We compare this approach with supremizer enrichment options through several numerical experiments. We are interested to (numerically) guarantee the parametrized reduced inf-sup condition and to reduce the online computational costs.

    Mathematics Subject Classification: Primary: 65M22, 65M60; Secondary: 35Q30, 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Parametrized domain

    Figure 2.  Stokes problem: Franca-Hughes stabilization with $ \mathbb{P}_2/\mathbb{P}_2 $ FE pair; RB solutions for Velocity field (left) and Pressure field (right) at different time step from top to bottom; $ t = 0.02, 0.04, 0.06, 0.1, 0.12 $, $ N_u = N_p = 30 $

    Figure 3.  Stokes problem: Franca-Hughes stabilization with $ \mathbb{P}_2/\mathbb{P}_2 $ on cavity flow; $ L^2 $-error in time for velocity (left) and pressure (right) with stabilization coefficient $ \delta = 0.05 $ and $ \Delta{t} = 0.02 $

    Figure 4.  Stokes problem: $ L^2 $-error in time for velocity (left) and pressure (right) with stabilization coefficient $ \delta = 0.05 $ and $ \Delta{t} = 0.02. $ using $ \mathbb{P}_1/{\mathbb{P}_0} $

    Figure 5.  Stokes problem: Franca-Hughes stabilization; $ L^2 $-error in time for Velocity (left) and pressure (right) using $ \mathbb{P}_2/\mathbb{P}_2 $ and $ \delta = 0.05 $, $ \Delta{t} = 0.02, 0.002, 0.0002 $. offline-online stabilization without supremizer

    Figure 6.  Navier-Stokes problem with SUPG stabilization; physical parametrization on cavity flow; Error between FE and RB solution for velocity (left) and pressure (right) using $ \mathbb{P}_1/{\mathbb{P}_1} $

    Figure 7.  Navier-Stokes problem with SUPG stabilization; physical parametrization on cavity flow; Error between FE and RB solution for velocity (left) and pressure (right) using $ \mathbb{P}_2/{\mathbb{P}_2} $

    Figure 8.  Navier-Stokes problem with SUPG stabilization using $ \mathbb{P}_1/{\mathbb{P}_1} $: Velocity (left) and pressure (right) error for physical and geometrical parameters on cavity flow

    Table 1.  Stokes problem: Computational details of unsteady Stokes problem (3)

    Number of Parameters 2: $ \mu_1 $(viscosity), $ \mu_2 $(domain's length)
    $ \mu_1 $ range offline [0.25, 0.75]
    $ \mu_2 $ range offline [1, 2]
    $ \mu_1 $ value online 0.57
    $ \mu_2 $ value online 1.78
    Final time 0.2
    Time step $ \Delta t $ 0.02
    $ N_{train} $ 25
    $ N_{max} $ 25
    Stabilization coefficient $ \delta $ 0.05
    FE degrees of freedom ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 6222 $
    $ 18300 $ ($ \mathbb{P}_2/{\mathbb{P}_2} $)
    RB dimension $ N_u=N_s=N_p=30 $
    Computation time ($ \mathbb{P}_2/{\mathbb{P}_1} $) $ 1780s $ (offline), $ 300s $ (online) with supremizer
    Offline time ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 1046s $ (offline-online stabilization with supremizer)
    $ 738s $ (offline-online stabilization without supremizer)
    $ 980s $ (offline-only stabilization with supremizer)
    Offline time ($ \mathbb{P}_2/{\mathbb{P}_2} $) $ 2260s $ (offline-online stabilization with supremizer)
    $ 1945s $ (offline-online stabilization without supremizer)
    $ 1730s $ (offline-only stabilization with supremizer)
    Online time ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 103s $ (offline-online stabilization with supremizer)
    $ 82s $ (offline-online stabilization without supremizer)
    $ 81s $ (offline-only stabilization with supremizer)
    Online time ($ \mathbb{P}_2/{\mathbb{P}_2} $) $ 242s $ (offline-online stabilization with supremizer)
    $ 180s $ (offline-online stabilization without supremizer)
    $ 90s $ (offline-only stabilization with supremizer)
     | Show Table
    DownLoad: CSV

    Table 2.  Navier-Stokes problem with physical parameter only: Computational details of unsteady Navier-Stokes problem without Empirical Interpolation

    Physical parameter $ \mu $ (Reynolds number)
    Range of $ \mu $ [100,200]
    Online $ \mu $ (example) 130
    FE degrees of freedom 5934 ($ \mathbb{P}_1/{\mathbb{P}_1} $)
    RB dimension $ N_u=N_s=N_p=30 $
    Offline time ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 40612s $ (offline-online stabilization with supremizer)
    $ 38781s $ (offline-online stabilization without supremizer)
    Online time ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 4640s $ (offline-online stabilization with supremizer)
    $ 4040s $ (offline-online stabilization without supremizer)
    Time step $ 0.02 $
    Final time $ 0.5 $
     | Show Table
    DownLoad: CSV

    Table 3.  Computational details for unsteady Navier-Stokes problem with physical and geometrical parameters: stabilization and computational reduction

    Physical parameter $ \mu_1 $ (Reynolds number)
    Geometrical parameter $ \mu_2 $ (horizontal length of domain)
    Range of $ \mu_1 $ [100,200]
    Range of $ \mu_2 $ [1.5, 3]
    $ \mu_1 $ online (example) 130
    $ \mu_2 $ online (example) 2
    FE degrees of freedom 6222 ($ \mathbb{P}_1/{\mathbb{P}_1} $)
    RB dimension $ N_u=N_s=N_p=30 $
    Offline time ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 44693s $ (offline-online stabilization with supremizer)
    $ 40153s $ (offline-online stabilization without supremizer)
    Online time ($ \mathbb{P}_1/{\mathbb{P}_1} $) $ 5169s $ (offline-online stabilization with supremizer)
    $ 4724s $ (offline-online stabilization without supremizer)
    Time step $ 0.02 $
    Final time $ 0.5 $
     | Show Table
    DownLoad: CSV
  • [1] S. AliF. Ballarin and G. Rozza, Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations, Computers & Mathematics with Applications, 80 (2020), 2399-2416.  doi: 10.1016/j.camwa.2020.03.019.
    [2] F. BallarinA. ManzoniA. Quarteroni and G. Rozza, Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations, International Journal for Numerical Methods in Engineering, 102 (2015), 1136-1161.  doi: 10.1002/nme.4772.
    [3] F. BallarinT. C. RebolloE. A. DelgadoM. M. Gómez and G. Rozza, Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height, Computers & Mathematics with Applications, 80 (2020), 973-989.  doi: 10.1016/j.camwa.2020.05.013.
    [4] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38 (2001), 173-199.  doi: 10.1007/s10092-001-8180-4.
    [5] B. P. BochevM. D. Gunzburger and B. R. Lehoucq, On stabilized finite element methods for the Stokes problem in the small time step limit, International Journal for Numerical Methods in Fluids, 53 (2007), 573-597.  doi: 10.1002/fld.1295.
    [6] P. B. Bochev, M. D. Gunzburger and R. Lehoucq, On Stabilized Finite Element Methods for Transient Problems with Varying Time Scales, Proceedings of ECOMAS, 2004.
    [7] P. B. BochevM. D. Gunzburger and J. N. Shadid, On inf-sup stabilized finite element methods for transient problems, Computer Methods in Applied Mechanics and Engineering, 193 (2004), 1471-1489.  doi: 10.1016/j.cma.2003.12.034.
    [8] P. B. BochevM. D. Gunzburger and J. N. Shadid, An 'empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339 (2004), 667-672.  doi: 10.1016/j.crma.2004.08.006.
    [9] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer, 2013. doi: 10.1007/978-3-642-36519-5.
    [10] A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32 (1982), 199-259.  doi: 10.1016/0045-7825(82)90071-8.
    [11] A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin Methods for Advection Dominated Flows, Third International Conference on Finite Element Methods in Fluid Flow, Calgary, Canada, Calgary Univ, 1980.
    [12] S. BuosoA. ManzoniH. Alkadhi and V. Kurtcuoglu, Stabilized reduced-order models for unsteady incompressible flows in three-dimensional parametrized domains, Computers & Fluids, 246 (2022), 105604.  doi: 10.1016/j.compfluid.2022.105604.
    [13] E. Burman and M. Fernández, Galerkin finite element methods with symmetric pressure stabilization for the transient stokes equations: Stability and convergence analysis, SIAM Journal on Numerical Analysis, 47 (2009), 409-439.  doi: 10.1137/070707403.
    [14] I. ChristieD. F. GriffithsA. R. Mitchell and O. C. Zienkiewicz, Finite element methods for second order differential equations with significant first derivatives, International Journal for Numerical Methods in Engineering, 10 (1976), 1389-1396.  doi: 10.1002/nme.1620100617.
    [15] J. Claes and S. Jukka, Streamline diffusion methods for the incompressible euler and Navier-Stokes equations, Mathematics of Computation, 47 (1986), 1-18.  doi: 10.1090/S0025-5718-1986-0842120-4.
    [16] S. Deparis, Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach, SIAM Journal on Numerical Analysis, 46 (2008), 2039-2067.  doi: 10.1137/060674181.
    [17] S. Deparis and G. Rozza, Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity, Journal of Computational Physics, 228 (2009), 4359-4378.  doi: 10.1016/j.jcp.2009.03.008.
    [18] R. Dimitrios, Reduced-basis Output Bound Methods for Parametrized Partial Differential Equations, Ph.D thesis, Massachusetts Institute of Technology, 2003.
    [19] J. Douglas and J. P. Wang, An absolutely stabilized finite element formulation for the Stokes problem, Mathematics of Computations, 52 (1989), 495-508.  doi: 10.1090/S0025-5718-1989-0958871-X.
    [20] L. Formaggia, F. Saleri and A. Veneziani, Solving Numerical PDEs: Problems, Applications, Exercises, Springer-Verlag Mailand, 2012. doi: 10.1007/978-88-470-2412-0.
    [21] L. P. Franca and S. L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 99 (1992), 209-233.  doi: 10.1016/0045-7825(92)90041-H.
    [22] L. P. FrancaS. L. Frey and T. J. R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model, Computer Methods in Applied Mechanics and Engineering, 95 (1992), 253-276.  doi: 10.1016/0045-7825(92)90143-8.
    [23] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, 1986. doi: 10.1007/978-3-642-61623-5.
    [24] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Computer Science and Scientific Computing, 1989. doi: 10.1016/B978-0-12-307350-1.50009-0.
    [25] B. Haasdonk, Convergence Rates of the POD-Greedy Method, ESAIM: M2AN, 47 (2013), 859-873.  doi: 10.1051/m2an/2012045.
    [26] P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 84 (1990), 175-192.  doi: 10.1016/0045-7825(90)90116-4.
    [27] S. Hijazi, S. Ali, G. Stabile, F. Ballarin and G. Rozza, The effort of increasing reynolds number in projection-based reduced order methods: From laminar to turbulent flows, Numerical Methods for Flows: FEF 2017 Selected Contributions, Springer International Publishing, 132 (2020), 245-264. doi: 10.1007/978-3-030-30705-9_22.
    [28] J. C. HinrichP. S. HuyakornO. C. Zienkiewicz and A. R. Mitchell, An 'upwind' finite element scheme for two-dimensional convective transport equation, International Journal for Numerical Methods in Engineering, 11 (1977), 131-143.  doi: 10.1002/nme.1620110113.
    [29] J. C. Hinrich and O. C. Zienkiewicz, Quadratic finite element schemes for two-dimensional convective-transport problems, International Journal for Numerical Methods in Engineering, 11 (1977), 1831-1844.  doi: 10.1002/nme.1620111207.
    [30] T. J. R. Hughes, A simple scheme for developing 'upwind' finite elements, International Journal for Numerical Methods in Engineering, 12 (1978), 1359-1365.  doi: 10.1002/nme.1620120904.
    [31] T. J. R. Hughes and A. Brooks, A multi-dimensioal upwind scheme with no crosswind diffusion, Finite Element Methods for Convection Dominated Flows, New York, U. S. A, 1979, 19-35.
    [32] T. J. R. Hughesn and L. P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Computer Methods in Applied Mechanics and Engineering, 65 (1987), 85-96.  doi: 10.1016/0045-7825(87)90184-8.
    [33] T. J. R. HughesL. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babu Ã... Ãika-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, 59 (1986), 85-99.  doi: 10.1016/0045-7825(86)90025-3.
    [34] T. J. R. HughesL. P. Franca and G. M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, 73 (1989), 173-189.  doi: 10.1016/0045-7825(89)90111-4.
    [35] T. J. R. HughesW. K. Liu and A. Brooks, Finite element analysis of incompressible viscous flows by the penalty function formulation, Journal of Computational Physics, 30 (1979), 1-60.  doi: 10.1016/0021-9991(79)90086-X.
    [36] A. E. Løvgren, A Reduced Basis Method for the Steady Navier-Stokes Problem, Ph.D thesis, Norwegian University of Science and Technology, 2006.
    [37] A. E. LovgrenY. Maday and E. M. Ronquist, A reduced basis element method for the steady Stokes problem, ESAIM: Mathematical Modelling and Numerical Analysis, 40 (2006), 529-552. 
    [38] A. Manzoni, An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 1199-1226.  doi: 10.1051/m2an/2014013.
    [39] F. NegriA. Manzoni and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Computers & Mathematics with Applications, 69 (2015), 319-336.  doi: 10.1016/j.camwa.2014.12.010.
    [40] P. Pacciarini and G. Rozza, Stabilized reduced basis method for parametrized advection-diffusion PDEs, Computer Methods in Applied Mechanics and Engineering, 274 (2014), 1-18.  doi: 10.1016/j.cma.2014.02.005.
    [41] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Science & Business Media, 1994. doi: 10.1007/978-3-540-85268-1.
    [42] P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, 1976.
    [43] G. Rozza, Shape Design by Optimal Flow Control and Reduced Basis Techniques: Applications to Bypass Configurations in Haemodynamics, Ph.D thesis, École Polytechnique Fédérale de Lausanne, N. 3400, 2005.
    [44] G. Rozza, Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity, Applied Numerical Mathematics, 55 (2005), 403-424.  doi: 10.1016/j.apnum.2004.11.004.
    [45] G. RozzaD. B. P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numerische Mathematik, 125 (2013), 115-152.  doi: 10.1007/s00211-013-0534-8.
    [46] G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 1244-1260.  doi: 10.1016/j.cma.2006.09.005.
    [47] G. StabileF. BallarinG. Zuccarino and G. Rozza, A reduced order variational multiscale approach for turbulent flows, Advances in Computational Mathematics, 45 (2019), 2349-2368.  doi: 10.1007/s10444-019-09712-x.
    [48] T. E. TezduyarS. MittalS. E. Ray and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Computer Methods in Applied Mechanics and Engineering, 95 (1992), 221-242.  doi: 10.1016/0045-7825(92)90141-6.
    [49] K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, International Journal for Numerical Methods in Fluids, 47 (2005), 773-788.  doi: 10.1002/fld.867.
  • 加载中

Figures(8)

Tables(3)

SHARE

Article Metrics

HTML views(1843) PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return