[1]
|
S. Ali, F. Ballarin and G. Rozza, Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations, Computers & Mathematics with Applications, 80 (2020), 2399-2416.
doi: 10.1016/j.camwa.2020.03.019.
|
[2]
|
F. Ballarin, A. Manzoni, A. Quarteroni and G. Rozza, Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations, International Journal for Numerical Methods in Engineering, 102 (2015), 1136-1161.
doi: 10.1002/nme.4772.
|
[3]
|
F. Ballarin, T. C. Rebollo, E. A. Delgado, M. M. Gómez and G. Rozza, Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height, Computers & Mathematics with Applications, 80 (2020), 973-989.
doi: 10.1016/j.camwa.2020.05.013.
|
[4]
|
R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38 (2001), 173-199.
doi: 10.1007/s10092-001-8180-4.
|
[5]
|
B. P. Bochev, M. D. Gunzburger and B. R. Lehoucq, On stabilized finite element methods for the Stokes problem in the small time step limit, International Journal for Numerical Methods in Fluids, 53 (2007), 573-597.
doi: 10.1002/fld.1295.
|
[6]
|
P. B. Bochev, M. D. Gunzburger and R. Lehoucq, On Stabilized Finite Element Methods for Transient Problems with Varying Time Scales, Proceedings of ECOMAS, 2004.
|
[7]
|
P. B. Bochev, M. D. Gunzburger and J. N. Shadid, On inf-sup stabilized finite element methods for transient problems, Computer Methods in Applied Mechanics and Engineering, 193 (2004), 1471-1489.
doi: 10.1016/j.cma.2003.12.034.
|
[8]
|
P. B. Bochev, M. D. Gunzburger and J. N. Shadid, An 'empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339 (2004), 667-672.
doi: 10.1016/j.crma.2004.08.006.
|
[9]
|
D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer, 2013.
doi: 10.1007/978-3-642-36519-5.
|
[10]
|
A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32 (1982), 199-259.
doi: 10.1016/0045-7825(82)90071-8.
|
[11]
|
A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin Methods for Advection Dominated Flows, Third International Conference on Finite Element Methods in Fluid Flow, Calgary, Canada, Calgary Univ, 1980.
|
[12]
|
S. Buoso, A. Manzoni, H. Alkadhi and V. Kurtcuoglu, Stabilized reduced-order models for unsteady incompressible flows in three-dimensional parametrized domains, Computers & Fluids, 246 (2022), 105604.
doi: 10.1016/j.compfluid.2022.105604.
|
[13]
|
E. Burman and M. Fernández, Galerkin finite element methods with symmetric pressure stabilization for the transient stokes equations: Stability and convergence analysis, SIAM Journal on Numerical Analysis, 47 (2009), 409-439.
doi: 10.1137/070707403.
|
[14]
|
I. Christie, D. F. Griffiths, A. R. Mitchell and O. C. Zienkiewicz, Finite element methods for second order differential equations with significant first derivatives, International Journal for Numerical Methods in Engineering, 10 (1976), 1389-1396.
doi: 10.1002/nme.1620100617.
|
[15]
|
J. Claes and S. Jukka, Streamline diffusion methods for the incompressible euler and Navier-Stokes equations, Mathematics of Computation, 47 (1986), 1-18.
doi: 10.1090/S0025-5718-1986-0842120-4.
|
[16]
|
S. Deparis, Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach, SIAM Journal on Numerical Analysis, 46 (2008), 2039-2067.
doi: 10.1137/060674181.
|
[17]
|
S. Deparis and G. Rozza, Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity, Journal of Computational Physics, 228 (2009), 4359-4378.
doi: 10.1016/j.jcp.2009.03.008.
|
[18]
|
R. Dimitrios, Reduced-basis Output Bound Methods for Parametrized Partial Differential Equations, Ph.D thesis, Massachusetts Institute of Technology, 2003.
|
[19]
|
J. Douglas and J. P. Wang, An absolutely stabilized finite element formulation for the Stokes problem, Mathematics of Computations, 52 (1989), 495-508.
doi: 10.1090/S0025-5718-1989-0958871-X.
|
[20]
|
L. Formaggia, F. Saleri and A. Veneziani, Solving Numerical PDEs: Problems, Applications, Exercises, Springer-Verlag Mailand, 2012.
doi: 10.1007/978-88-470-2412-0.
|
[21]
|
L. P. Franca and S. L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 99 (1992), 209-233.
doi: 10.1016/0045-7825(92)90041-H.
|
[22]
|
L. P. Franca, S. L. Frey and T. J. R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model, Computer Methods in Applied Mechanics and Engineering, 95 (1992), 253-276.
doi: 10.1016/0045-7825(92)90143-8.
|
[23]
|
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, 1986.
doi: 10.1007/978-3-642-61623-5.
|
[24]
|
M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Computer Science and Scientific Computing, 1989.
doi: 10.1016/B978-0-12-307350-1.50009-0.
|
[25]
|
B. Haasdonk, Convergence Rates of the POD-Greedy Method, ESAIM: M2AN, 47 (2013), 859-873.
doi: 10.1051/m2an/2012045.
|
[26]
|
P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 84 (1990), 175-192.
doi: 10.1016/0045-7825(90)90116-4.
|
[27]
|
S. Hijazi, S. Ali, G. Stabile, F. Ballarin and G. Rozza, The effort of increasing reynolds number in projection-based reduced order methods: From laminar to turbulent flows, Numerical Methods for Flows: FEF 2017 Selected Contributions, Springer International Publishing, 132 (2020), 245-264.
doi: 10.1007/978-3-030-30705-9_22.
|
[28]
|
J. C. Hinrich, P. S. Huyakorn, O. C. Zienkiewicz and A. R. Mitchell, An 'upwind' finite element scheme for two-dimensional convective transport equation, International Journal for Numerical Methods in Engineering, 11 (1977), 131-143.
doi: 10.1002/nme.1620110113.
|
[29]
|
J. C. Hinrich and O. C. Zienkiewicz, Quadratic finite element schemes for two-dimensional convective-transport problems, International Journal for Numerical Methods in Engineering, 11 (1977), 1831-1844.
doi: 10.1002/nme.1620111207.
|
[30]
|
T. J. R. Hughes, A simple scheme for developing 'upwind' finite elements, International Journal for Numerical Methods in Engineering, 12 (1978), 1359-1365.
doi: 10.1002/nme.1620120904.
|
[31]
|
T. J. R. Hughes and A. Brooks, A multi-dimensioal upwind scheme with no crosswind diffusion, Finite Element Methods for Convection Dominated Flows, New York, U. S. A, 1979, 19-35.
|
[32]
|
T. J. R. Hughesn and L. P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Computer Methods in Applied Mechanics and Engineering, 65 (1987), 85-96.
doi: 10.1016/0045-7825(87)90184-8.
|
[33]
|
T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babu Ã... Ãika-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, 59 (1986), 85-99.
doi: 10.1016/0045-7825(86)90025-3.
|
[34]
|
T. J. R. Hughes, L. P. Franca and G. M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, 73 (1989), 173-189.
doi: 10.1016/0045-7825(89)90111-4.
|
[35]
|
T. J. R. Hughes, W. K. Liu and A. Brooks, Finite element analysis of incompressible viscous flows by the penalty function formulation, Journal of Computational Physics, 30 (1979), 1-60.
doi: 10.1016/0021-9991(79)90086-X.
|
[36]
|
A. E. Løvgren, A Reduced Basis Method for the Steady Navier-Stokes Problem, Ph.D thesis, Norwegian University of Science and Technology, 2006.
|
[37]
|
A. E. Lovgren, Y. Maday and E. M. Ronquist, A reduced basis element method for the steady Stokes problem, ESAIM: Mathematical Modelling and Numerical Analysis, 40 (2006), 529-552.
|
[38]
|
A. Manzoni, An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 1199-1226.
doi: 10.1051/m2an/2014013.
|
[39]
|
F. Negri, A. Manzoni and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Computers & Mathematics with Applications, 69 (2015), 319-336.
doi: 10.1016/j.camwa.2014.12.010.
|
[40]
|
P. Pacciarini and G. Rozza, Stabilized reduced basis method for parametrized advection-diffusion PDEs, Computer Methods in Applied Mechanics and Engineering, 274 (2014), 1-18.
doi: 10.1016/j.cma.2014.02.005.
|
[41]
|
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Science & Business Media, 1994.
doi: 10.1007/978-3-540-85268-1.
|
[42]
|
P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, 1976.
|
[43]
|
G. Rozza, Shape Design by Optimal Flow Control and Reduced Basis Techniques: Applications to Bypass Configurations in Haemodynamics, Ph.D thesis, École Polytechnique Fédérale de Lausanne, N. 3400, 2005.
|
[44]
|
G. Rozza, Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity, Applied Numerical Mathematics, 55 (2005), 403-424.
doi: 10.1016/j.apnum.2004.11.004.
|
[45]
|
G. Rozza, D. B. P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numerische Mathematik, 125 (2013), 115-152.
doi: 10.1007/s00211-013-0534-8.
|
[46]
|
G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 1244-1260.
doi: 10.1016/j.cma.2006.09.005.
|
[47]
|
G. Stabile, F. Ballarin, G. Zuccarino and G. Rozza, A reduced order variational multiscale approach for turbulent flows, Advances in Computational Mathematics, 45 (2019), 2349-2368.
doi: 10.1007/s10444-019-09712-x.
|
[48]
|
T. E. Tezduyar, S. Mittal, S. E. Ray and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Computer Methods in Applied Mechanics and Engineering, 95 (1992), 221-242.
doi: 10.1016/0045-7825(92)90141-6.
|
[49]
|
K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, International Journal for Numerical Methods in Fluids, 47 (2005), 773-788.
doi: 10.1002/fld.867.
|