[1]
|
M. Amadasun and R. King, Textural features corresponding to textural properties, IEEE Trans. Syst., Man, Cybern., 19 (1989), 1264-1274.
doi: 10.1109/21.44046.
|
[2]
|
B. Baeßler, K. Weiss and D. P. Dos Santos, Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study, Investig. radiol., 54 (2019), 221-228.
doi: 10.1097/RLI.0000000000000530.
|
[3]
|
L. Brunasso, G. Ferini, L. Bonosi, R. Costanzo, S. Musso, U. E. Benigno, R. M. Gerardi, G. R. Giammalva, F. Paolini, G. E. Umana, F. Graziano, G. Scalia, C. L. Sturiale, R. Di Bonaventura, D. G. Iacopino and R. Maugeri, A spotlight on the role of radiomics and machinelearning applications in the management of intracranial meningiomas: A new Perspective in Neuro-Oncology: A review, Life, 12 (2022), 586.
doi: 10.3390/life12040586.
|
[4]
|
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. on Image Proc., 10 (2001), 266-277.
doi: 10.1109/83.902291.
|
[5]
|
A. Chu, C. M. Sehgal and J. F. Greenleaf, Use of gray value distribution of run lengths for texture analysis, Pattern Recognit. Lett., 11 (1990), 415-419.
doi: 10.1016/0167-8655(90)90112-F.
|
[6]
|
B. V. Dasarathy and E. B. Holder, Image characterizations based on joint gray level – run length distributions, Pattern Recognit. Lett., 12 (1991), 497-502.
doi: 10.1016/0167-8655(91)80014-2.
|
[7]
|
L. R. Dice, Measures of the amount of ecologic association between species, Ecol., 26 (1945), 297-302.
doi: 10.2307/1932409.
|
[8]
|
F. Fiz, C. Marini, R. Piva, M. Miglino, M. Massollo, F. Bongioanni, S. Morbelli, G. Bottoni, C. Campi, A. Bacigalupo, P. Bruzzi, F. Frassoni, M. Piana and G. Sambuceti, Adult advanced chronic lymphocytic leukemia: Computational analysis of whole-body CT documents a bone structure alteration, Radiol., 271 (2014), 805-813.
doi: 10.1148/radiol.14131944.
|
[9]
|
M. M. Galloway, Texture analysis using gray level run lengths, Comp. Graph. and Image Process., 4 (1975), 172-179.
doi: 10.1016/S0146-664X(75)80008-6.
|
[10]
|
R. W. Y. Granzier, N. M. H. Verbakel, A. Ibrahim, J. E. van Timmeren, T. J. A. van Nijnatten, R. T. H. Leijenaar, M. B. I. Lobbes, M. L. Smidt and H. C. Woodruff, MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability, Sci. Rep., 10 (2020), 14163.
doi: 10.1038/s41598-020-70940-z.
|
[11]
|
R. M. Haralick, K. Shanmugam and I. Dinstein, Textural features for image classification, IEEE Trans. on Syst., Man, and Cybern., SMC-3 (1973), 610-621.
doi: 10.1109/TSMC.1973.4309314.
|
[12]
|
M. Hu and J. Tan, Adaptive osculatory rational interpolation for image processing, J. of Comp. and Appl. Math., 195 (2006), 46-53.
doi: 10.1016/j.cam.2005.07.011.
|
[13]
|
F. Isensee, P. Kickingereder, W. Wick, M. Bendszus and K. H. Maier-Hein, Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge, In Inter. MICCAI Brainlesion Workshop, Springer, 2017,287-297.
doi: 10.1007/978-3-319-75238-9_25.
|
[14]
|
H. C. Kniep, F. Madesta, T. Schneider, U. Hanning, M. H. Schönfeld, G. Schön, J. Fiehler, T. Gauer, R. Werner and S. Gellissen, Radiomics of brain MRI: Utility in prediction of metastatic tumor type, Radiol., 290 (2019), 479-487.
doi: 10.1148/radiol.2018180946.
|
[15]
|
T. K. Koo and M. Y. Li, A guideline of selecting and reporting intraclass correlation coefficients for reliability research, J. of Chiropr. Med., 15 (2016), 155-163.
doi: 10.1016/j.jcm.2016.02.012.
|
[16]
|
P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R. G. P. M. Van Stiphout, P. Granton, C. M. L. Zegers, R. Gillies, R. Boellard, A. Dekker and H. J. W. L. Aerts, Radiomics: Extracting more information from medical images using advanced feature analysis, Eur. J. of Cancer, 48 (2012), 441-446.
doi: 10.1016/j.ejca.2011.11.036.
|
[17]
|
J. Lao, Y. Chen, Z.-C. Li, Q. Li, J. Zhang, J. Liu and G. Zhai, A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme, Sci. Rep., 7 (2017), Article number: 1.
doi: 10.1038/s41598-016-0028-x.
|
[18]
|
K. R. Laukamp, G. Shakirin, B. Baeßler, F. Thiele, D. Zopfs, N. Große Hokamp, M. Timmer, C. Kabbasch, M. Perkuhn and J. Borggrefe, Accuracy of radiomics-based feature analysis on multiparametric magnetic resonance images for noninvasive meningioma grading, World Neurosurgery, 132 (2019), e366-e390.
doi: 10.1016/j.wneu.2019.08.148.
|
[19]
|
E. J. Limkin, R. Sun, L. Dercle, E. I. Zacharaki, C. Robert, S. Reuzé, A. Schernberg, N. Paragios, E. Deutsch and C. Ferté, Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology, Annals of Oncol., 28 (2017), 1191-1206.
doi: 10.1093/annonc/mdx034.
|
[20]
|
R. Liu, H. Elhalawani, A. S. Radwan Mohamed, B. Elgohari, L. Court, H. Zhu and C. D. Fuller, Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer, Clin. and Transl. Radiat. Oncol., 21 (2020), 11-18.
doi: 10.1016/j.ctro.2019.11.005.
|
[21]
|
P. Lohmann, N. Galldiks, M. Kocher, A. Heinzel, C. P. Filss, C. Stegmayr, F. M. Mottaghy, G. R. Fink, N. J. Shah and K.-J. Langen, Radiomics in neuro-oncology: Basics, workflow, and applications, Methods, 188 (2021), 112-121.
doi: 10.1016/j.ymeth.2020.06.003.
|
[22]
|
D. Mackin, X. Fave, L. Zhang, D. Fried, J. Yang, B. Taylor, E. Rodriguez-Rivera, C. Dodge, A. K. Jones and L. Court, Measuring computed tomography scanner variability of radiomics features, Investigative Radiology, 50 (2015), 757-765.
doi: 10.1097/RLI.0000000000000180.
|
[23]
|
K. O. McGraw and S. P. Wong, Forming inferences about some intraclass correlation coefficients, Psychol. Methods, 1 (1996), 30-46.
doi: 10.1037/1082-989X.1.1.30.
|
[24]
|
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42 (1989), 577-685.
doi: 10.1002/cpa.3160420503.
|
[25]
|
J. E. Park, H. S. Kim, D. Kim, S. Y. Park, J. Y. Kim, S. J. Cho and J. H. Kim, A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features, BMC Cancer, 20 (2020), Article number: 29.
doi: 10.1186/s12885-019-6504-5.
|
[26]
|
C. Parmar, E. Rios Velazquez, R. Leijenaar, M. Jermoumi, S. Carvalho, R. H. Mak, S. Mitra, B. U. Shankar, R. Kikinis, B. Haibe-Kains, P. Lambin and H. J. W. L. Aerts, Robust radiomics feature quantification using semiautomatic volumetric segmentation, PLOS ONE, 9 (2014), e102107.
doi: 10.1371/journal.pone.0102107.
|
[27]
|
M. G. Poirot, M. W. A. Caan, H. G. Ruhe, A. Bjørnerud, I. Groote, L. Reneman and H. A. Marquering, Robustness of radiomics to variations in segmentation methods in multimodal brain MRI, Scientific Reports, 12 (2022), 16712.
doi: 10.1038/s41598-022-20703-9.
|
[28]
|
S. Rizzo, F. Botta, S. Raimondi, D. Origgi, C. Fanciullo, A. G. Morganti and M. Bellomi, Radiomics: The facts and the challenges of image analysis, Eur. Radiol. Exp., 2 (2018), Article number: 36.
doi: 10.1186/s41747-018-0068-z.
|
[29]
|
N. Saltybaeva, S. Tanadini-Lang, D. Vuong, S. Burgermeister, M. Mayinger, A. Bink, N. Andratschke, M. Guckenberger and M. Bogowicz, Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study, Phys. and Imaging in Radiat. Oncol., 22 (2022), 131-136.
doi: 10.1016/j.phro.2022.05.006.
|
[30]
|
G. Sambuceti, M. Brignone, C. Marini, M. Massollo, F. Fiz, S. M., A. Buschiazzo, C. Campi, R. Piva, A. M. Massone, M. Piana and F. Frassoni, Estimating the whole bone marrow asset in humans by a computational approach to integrated PET/CT imaging, Eur. J. Nucl. Med. Mol. Imag., 39 (2012), 1326-1338.
doi: 10.1007/s00259-012-2141-9.
|
[31]
|
D. Schenone, A. Dominietto, C. Campi, F. Frassoni, M. Cea, S. Aquino, E. Angelucci, F. Rossi, L. Torri, B. Bignotti, A. S. Tagliafico and M. Piana, Radiomics and artificial intelligence for outcome prediction in multiple myeloma patients undergoing autologous transplantation: A feasibility study with ct data, Diagn., 11 (2021), 1759.
doi: 10.3390/diagnostics11101759.
|
[32]
|
A. Stanzione, M. Gambardella, R. Cuocolo, A. Ponsiglione, V. Romeo and M. Imbriaco, Prostate MRI radiomics: A systematic review and radiomic quality score assessment, Eur. J. of Radiol., 129 (2020), 109095.
doi: 10.1016/j.ejrad.2020.109095.
|
[33]
|
A. S. Tagliafico, M. Piana, D. Schenone, R. Lai, A. M. Massone and N. Houssami, Overview of radiomics in breast cancer diagnosis and prognostication, The Breast, 49 (2020), 74-80.
doi: 10.1016/j.breast.2019.10.018.
|
[34]
|
G. Thibault, B. Fertil, C. Navarro, S. Pereira, P. Cau, N. Levy, J. Sequeira and J. L. Mari, Texture indexes and gray level size zone matrix: Application to cell nuclei classification, In 10th Int. Conf. on Pattern Recognit. and Inform. Process., PRIP 2009, 2009,140-145. https://www.thibault.biz/Doc/Publications/TextureIndexesAndGrayLevelSizeZoneMatrixApplicationToCellNucleiClassification_PRIP2009.pdf
|
[35]
|
A. Traverso, L. Wee, A. Dekker and R. Gillies, Repeatability and reproducibility of radiomic features: A systematic review, Int. J. of Radiat. Oncol. Biol. Phys., 102 (2018), 1143-1158.
doi: 10.1016/j.ijrobp.2018.05.053.
|
[36]
|
L. Ugga, G. Spadarella, L. Pinto, R. Cuocolo and A. Brunetti, Meningioma radiomics: At the nexus of imaging, pathology and biomolecular characterization, Cancers, 14 (2022), 2605.
doi: 10.3390/cancers14112605.
|
[37]
|
M. Vallières, C. R. Freeman, S. R. Skamene and I. El Naqa, A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, Phys. Med. Biol., 60 (2015), 5471-5496.
doi: 10.1088/0031-9155/60/14/5471.
|
[38]
|
J. E. van Timmeren, D. Cester, S. Tanadini-Lang, H. Alkadhi and B. Baessler, Radiomics in medical imaging-"how-to" guide and critical reflection, Insights into Imaging, 11 (2020), Article number: 91.
doi: 10.1186/s13244-020-00887-2.
|
[39]
|
J. Wong, M. Baine, S. Wisnoskie, N. Bennion, D. Zheng, L. Yu, V. Dalal, M. A. Hollingsworth, C. Lin and D. Zheng, Effects of interobserver and interdisciplinary segmentation variabilities on CT-based radiomics for pancreatic cancer, Sci. Rep., 11 (2021), 16328.
doi: 10.1038/s41598-021-95152-x.
|
[40]
|
G. Wu, Y. Chen, Y. Wang, J. Yu, X. Lv, X. Ju, Z. Shi, L. Chen and Z. Chen, Sparse representation-based radiomics for the diagnosis of brain tumors, IEEE Trans. on Med. Imaging, 37 (2018), 893-905.
doi: 10.1109/TMI.2017.2776967.
|
[41]
|
C. Xue, J. Yuan, G. G. Lo, A. T. Y. Chang, D. M. C. Poon, O. L. Wong, Y. Zhou and W. C. W. Chu, Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review, Quant. Imaging in Med. and Surg., 11 (2021), 4431.
doi: 10.21037/qims-21-86.
|