\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A hybrid time-frequency parametric modelling of medical ultrasound signal transmission

  • *Corresponding author: Chiara Razzetta

    *Corresponding author: Chiara Razzetta 
Abstract / Introduction Full Text(HTML) Figure(8) / Table(4) Related Papers Cited by
  • Medical ultrasound imaging is the most widespread real-time non-invasive imaging system and its formulation comprises signal transmission, signal reception, and image formation. Ultrasound signal transmission modelling has been formalized over the years through different approaches by exploiting the physics of the associated wave problem. This work proposes a novel computational framework for modelling the ultrasound signal transmission step in the time-frequency domain for a linear-array probe. More specifically, from the impulse response theory defined in the time domain, we derived a parametric model in the corresponding frequency domain, with appropriate approximations for the narrowband case. To validate the model, we implemented a numerical simulator and tested it with synthetic data. Numerical experiments demonstrate that the proposed model is computationally feasible, efficient, and compatible with realistic measurements and existing state-of-the-art simulators. The formulated model can be employed for analyzing how the involved parameters affect the generated beam pattern, and ultimately for optimizing measurement settings in an automatic and systematic way.

    Mathematics Subject Classification: Primary: 92C55, 94A08; Secondary: 68U10, 94A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Depiction of a beam pattern resulting from a linear-array probe with $ 2N $ elements of area $ A $, of which only $ M $ are activated, symmetrically with respect to the probe central axis

    Figure 2.  Behaviour of the sinc function with increasing number of cycles $ C $

    Figure 3.  Depiction of the geometry adopted for the calculation of a spatial impulse response for a fixed field point $ \vec{r} $ and a probe element. The element discretization grid is represented by the red dots, each of which is associated with the distance $ d_j $ and the angle $ \phi_j $

    Figure 4.  Average BP error $ D(BP, BP^F) $ on the $ 12 $ wideband and $ 12 $ narrowband cases, as a function of the number of points along depth. The error is computed for $ 5 $ different resolution sizes along depth, with a fixed $ dx = \frac{pitch}{4} $

    Figure 5.  Comparison of generated wideband BPs in different settings. On each column from the left: BPs generated with our simulator parUST, BPs from FIELD II, their absolute difference, and the distribution of pixel value differences. The unity of measure is dB

    Figure 6.  Comparison of generated narrowband BPs in different settings. On each column from the left: BPs generated with our simulator parUST, BPs from FIELD II, their absolute difference, and the distribution of pixel value differences. The unity of measure is dB

    Figure 7.  Comparison of generated narrowband BPs using a $ 9 MHz $ pulse and different apertures. On each column from the left: BPs generated with our simulator parUST, BPs from FIELD II, their absolute difference, and the distribution of pixel value differences. The unity of measure is dB

    Figure 8.  Examples of the parameters' domain for a linear-array probe. From the top, each row corresponds to a different fixed frequency $ f_0 = 4, \, 4.5, \, 5, \, 5.5 \, MHz $, where $ M = 8 $ ($ \bar{M} = 4 $) elements are active, with the two central ones not delayed. On each row the axes $ x, y, z $ represent the first three components of the PCA analysis, respectively. In all plots, each point corresponds to a BP represented through the three components instead of each pixel of which it is composed, while the color codifies a delay, one for each column

    Table 1.  Quantitative measure $ D $ for comparing $ 12 $ experiments in the wideband case. Each row contains the values for a different choice frequency, number of active elements M, and depth of focus F

    Frequency 3.0 MHz Frequency 4.5 MHz
    F (mm) $ M = 20 $ $ M = 50 $ $ M = 20 $ $ M = 50 $
    10 4.91e-4 9.11e-5 2.17e-4 6.43e-5
    25 1.05e-3 9.20e-5 3.57e-4 4.25e-4
    35 1.21e-3 2.83e-3 4.51e-4 1.58e-3
     | Show Table
    DownLoad: CSV

    Table 2.  Quantitative measure $ D $ for comparing $ 12 $ experiments in the narrowband case. Each row contains the values for a different choice of frequency, number of active elements M, and depth of focus F

    Frequency 3e6 Hz Frequency 4.5e6 Hz
    F (mm) $ M = 20 $ $ M = 50 $ $ M = 20 $ $ M = 50 $
    10 5.83e-4 1.10e-4 9.03e-6 1.13e-5
    25 1.37e-5 3.05e-5 1.04e-5 1.10e-5
    35 1.27e-3 1.15e-4 1.75e-5 7.28e-5
     | Show Table
    DownLoad: CSV

    Table 3.  Quantitative measure $ D $ for comparing $ 9 $ experiments for the evaluation of the grating lobes. Each row contains the values for a different choice of number of active elements M and depth of focus F, for a fixed frequency $ 9 \, MHz $

    Frequency 9e6 Hz
    F (mm) $ M = 20 $ $ M = 24 $ $ M = 28 $
    15 6.12e-4 5.14e-4 4.35e-4
    25 1.1e-3 1.2e-3 1.1e-3
    35 6.4e-4 6.8e-4 7.7e-4
     | Show Table
    DownLoad: CSV

    Table 4.  Comparison of average computational times needed for the computation of maps and BPs on a laptop and on a workstation (WS), with both our simulator (first $ 4 $ columns) and FIELD II (last $ 2 $ columns). Once the maps are computed and stored, the running time for BP generation is significantly advantageous with respect to FIELD II

    Maps Computing BPs Computing FIELD II
    Laptop WS Laptop WS Laptop WS
    Wide 720 s 50 s 8 s 5 s 80 s 76 s
    Narrow 246 s 16 s 0.007 s 0.004 s 115 s 105 s
     | Show Table
    DownLoad: CSV
  • [1] P.-A. AbsilR. Mahony and  R. SepulchreOptimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, 2008.  doi: 10.1515/9781400830244.
    [2] N. BoumalAn Introduction to Optimization on Smooth Manifolds, Cambridge University Press, 2023.  doi: 10.1017/9781009166164.
    [3] W. R. Brody and J. D. Meindl, Theoretical analysis of the CW Doppler ultrasonic flowmeter, IEEE Transactions on Biomedical Engineering, 21 (1974), 183-192.  doi: 10.1109/TBME.1974.324381.
    [4] T. Bruyneel, A. Ortega, L. Tong and J. D'hooge, A GPU-based implementation of the spatial impulse response method for fast calculation of linear sound fields and pulse-echo responses of array transducers, in 2013 IEEE International Ultrasonics Symposium (IUS), (2013), 367-369. doi: 10.1109/ULTSYM.2013.0095.
    [5] T. Chernyakova and Y. C. Eldar, Fourier-domain beamforming: The path to compressed ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (2014), 1252-1267.  doi: 10.1109/TUFFC.2014.3032.
    [6] R. S. C. CobboldFoundations of Biomedical Ultrasound, Biomedical engineering series. Oxford University Press, 2007. 
    [7] P. CrombieP. A. J. Bascom and R. S. C. Cobbold, Calculating the pulsed response of linear arrays: Accuracy vs. computational efficiency, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 44 (1997), 997-1009.  doi: 10.1109/58.655625.
    [8] C. CuetoO. BatesG. StrongJ. CudeiroF. LuporiniÒ. Calderón AgudoG. GormanL. Guasch and M. Tang, Stride: A flexible software platform for high-performance ultrasound computed tomography, Computer Methods and Programs in Biomedicine, 221 (2022), 106855.  doi: 10.1016/j.cmpb.2022.106855.
    [9] J. R. DohertyG. E. TraheyK. R. Nightingale and M. L. Palmeri, Acoustic radiation force elasticity imaging in diagnostic ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60 (2013), 685-701.  doi: 10.1109/TUFFC.2013.2617.
    [10] Y. DuH. Jensen and J. A. Jensen, Investigation of an angular spectrum approach for pulsed ultrasound fields, Ultrasonics, 53 (2013), 1185-1191.  doi: 10.1016/j.ultras.2013.02.011.
    [11] A. Fenster and  J. C. LacefieldUltrasound Imaging and Therapy, CRC Press, 2015.  doi: 10.1201/b18467.
    [12] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, 93 (2005), 216-231.  doi: 10.1109/JPROC.2004.840301.
    [13] D. Garcia, SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples, Computer Methods and Programs in Biomedicine, 218 (2022), 106726.  doi: 10.1016/j.cmpb.2022.106726.
    [14] G. R. Harris, Transient field of a baffled planar piston having an arbitrary vibration amplitude distribution, The Journal of the Acoustical Society of America, 70 (1981), 186-204.  doi: 10.1121/1.386671.
    [15] J. A. Jensen, A model for the propagation and scattering of ultrasound in tissue, J. Acoust. Soc. Am. 1991 Jan., 89 (1991), 182-191.  doi: 10.1121/1.400497.
    [16] J. A. Jensen, FIELD: A program for simulating ultrasound systems, Medical and Biological Engineering and Computing, 34 (1996), 351-352. 
    [17] J. A. Jensen, Linear Description of Ultrasound Imaging Systems: Notes for the International Summer School on Advanced Ultrasound Imaging at the Technical University of Denmark, Technical University of Denmark, Department of Electrical Engineering, 1999.
    [18] J. A. Jensen, A new calculation procedure for spatial impulse responses in ultrasound, The Journal of the Acoustical Society of America, 105 (1999), 3266-3274.  doi: 10.1121/1.424654.
    [19] J. A. Jensen, Ultrasound Imaging and its Modeling, Springer Berlin Heidelberg, Berlin, Heidelberg, (2002), 135-166.
    [20] J. A. Jensen, A multi-threaded version of Field II, in 2014 IEEE International Ultrasonics Symposium, (2014), 2229-2232. doi: 10.1109/ULTSYM.2014.0555.
    [21] J. A. Jensen and N. B. Svendsen, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39 (1992), 262-267.  doi: 10.1109/58.139123.
    [22] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942-1948.  doi: 10.1109/ICNN.1995.488968.
    [23] Y. Li and J. A. Zagzebski, A frequency domain model for generating B-mode images with array transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46 (1999), 690-699.  doi: 10.1109/58.764855.
    [24] C. Razzetta, M. Crocco and F. Benvenuto, Parallel parametric UltraSound Transmission software (parUST)(version v1: 2023-05-29), GitHub: https://github.com/chiararazzetta/parUST, 2023.
    [25] C. Razzetta, M. Crocco and F. Benvenuto, A stochastic approach to delays optimization for narrowband transmit beam pattern in medical ultrasound, 2023. arXiv: 2209.05758 doi: https://doi.org/10.48550/arXiv.2209.05758.
    [26] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, Academic press, 2004.
    [27] M. Tanter and M. Fink, Ultrafast imaging in biomedical ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (2014), 102-119.  doi: 10.1109/TUFFC.2014.2882.
    [28] B. E. Treeby and B. T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics, 15 (2010), 021314.  doi: 10.1117/1.3360308.
    [29] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Math. Appl., 297, Kluwer Academic Publishers Group, Dordrecht, 1994. doi: 10.1007/978-94-015-8390-9.
    [30] F. VarrayA. RamalliC. CachardP. Tortoli and O. Basset, Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58 (2011), 1366-1376.  doi: 10.1109/TUFFC.2011.1956.
    [31] P. A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), (2016), 261-265. doi: 10.1109/ICGTSPICC.2016.7955308.
    [32] A. I. VillalbaT. Landry and J. Brown, Parallel computing using Python-based software for a high-frequency ultrasound system, The Journal of the Acoustical Society of America, 146 (2019), 3073-3073.  doi: 10.1121/1.5137663.
    [33] U. Vyas and D. Christensen, Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59 (2012), 1093-1100.  doi: 10.1109/TUFFC.2012.2300.
    [34] B. YuH. JinY. MeiJ. ChenE. Wu and K. Yang, 3-D ultrasonic image reconstruction in frequency domain using a virtual transducer model, Ultrasonics, 118 (2022), 106573.  doi: 10.1016/j.ultras.2021.106573.
  • 加载中

Figures(8)

Tables(4)

SHARE

Article Metrics

HTML views(1736) PDF downloads(205) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return