Frequency 3.0 MHz | Frequency 4.5 MHz | |||
F (mm) | $ M = 20 $ | $ M = 50 $ | $ M = 20 $ | $ M = 50 $ |
10 | 4.91e-4 | 9.11e-5 | 2.17e-4 | 6.43e-5 |
25 | 1.05e-3 | 9.20e-5 | 3.57e-4 | 4.25e-4 |
35 | 1.21e-3 | 2.83e-3 | 4.51e-4 | 1.58e-3 |
Medical ultrasound imaging is the most widespread real-time non-invasive imaging system and its formulation comprises signal transmission, signal reception, and image formation. Ultrasound signal transmission modelling has been formalized over the years through different approaches by exploiting the physics of the associated wave problem. This work proposes a novel computational framework for modelling the ultrasound signal transmission step in the time-frequency domain for a linear-array probe. More specifically, from the impulse response theory defined in the time domain, we derived a parametric model in the corresponding frequency domain, with appropriate approximations for the narrowband case. To validate the model, we implemented a numerical simulator and tested it with synthetic data. Numerical experiments demonstrate that the proposed model is computationally feasible, efficient, and compatible with realistic measurements and existing state-of-the-art simulators. The formulated model can be employed for analyzing how the involved parameters affect the generated beam pattern, and ultimately for optimizing measurement settings in an automatic and systematic way.
Citation: |
Figure 8. Examples of the parameters' domain for a linear-array probe. From the top, each row corresponds to a different fixed frequency $ f_0 = 4, \, 4.5, \, 5, \, 5.5 \, MHz $, where $ M = 8 $ ($ \bar{M} = 4 $) elements are active, with the two central ones not delayed. On each row the axes $ x, y, z $ represent the first three components of the PCA analysis, respectively. In all plots, each point corresponds to a BP represented through the three components instead of each pixel of which it is composed, while the color codifies a delay, one for each column
Table 1.
Quantitative measure
Frequency 3.0 MHz | Frequency 4.5 MHz | |||
F (mm) | $ M = 20 $ | $ M = 50 $ | $ M = 20 $ | $ M = 50 $ |
10 | 4.91e-4 | 9.11e-5 | 2.17e-4 | 6.43e-5 |
25 | 1.05e-3 | 9.20e-5 | 3.57e-4 | 4.25e-4 |
35 | 1.21e-3 | 2.83e-3 | 4.51e-4 | 1.58e-3 |
Table 2.
Quantitative measure
Frequency 3e6 Hz | Frequency 4.5e6 Hz | |||
F (mm) | $ M = 20 $ | $ M = 50 $ | $ M = 20 $ | $ M = 50 $ |
10 | 5.83e-4 | 1.10e-4 | 9.03e-6 | 1.13e-5 |
25 | 1.37e-5 | 3.05e-5 | 1.04e-5 | 1.10e-5 |
35 | 1.27e-3 | 1.15e-4 | 1.75e-5 | 7.28e-5 |
Table 3.
Quantitative measure
Frequency 9e6 Hz | |||
F (mm) | $ M = 20 $ | $ M = 24 $ | $ M = 28 $ |
15 | 6.12e-4 | 5.14e-4 | 4.35e-4 |
25 | 1.1e-3 | 1.2e-3 | 1.1e-3 |
35 | 6.4e-4 | 6.8e-4 | 7.7e-4 |
Table 4.
Comparison of average computational times needed for the computation of maps and BPs on a laptop and on a workstation (WS), with both our simulator (first
Maps Computing | BPs Computing | FIELD II | ||||
Laptop | WS | Laptop | WS | Laptop | WS | |
Wide | 720 s | 50 s | 8 s | 5 s | 80 s | 76 s |
Narrow | 246 s | 16 s | 0.007 s | 0.004 s | 115 s | 105 s |
[1] | P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, 2008. doi: 10.1515/9781400830244. |
[2] | N. Boumal, An Introduction to Optimization on Smooth Manifolds, Cambridge University Press, 2023. doi: 10.1017/9781009166164. |
[3] | W. R. Brody and J. D. Meindl, Theoretical analysis of the CW Doppler ultrasonic flowmeter, IEEE Transactions on Biomedical Engineering, 21 (1974), 183-192. doi: 10.1109/TBME.1974.324381. |
[4] | T. Bruyneel, A. Ortega, L. Tong and J. D'hooge, A GPU-based implementation of the spatial impulse response method for fast calculation of linear sound fields and pulse-echo responses of array transducers, in 2013 IEEE International Ultrasonics Symposium (IUS), (2013), 367-369. doi: 10.1109/ULTSYM.2013.0095. |
[5] | T. Chernyakova and Y. C. Eldar, Fourier-domain beamforming: The path to compressed ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (2014), 1252-1267. doi: 10.1109/TUFFC.2014.3032. |
[6] | R. S. C. Cobbold, Foundations of Biomedical Ultrasound, Biomedical engineering series. Oxford University Press, 2007. |
[7] | P. Crombie, P. A. J. Bascom and R. S. C. Cobbold, Calculating the pulsed response of linear arrays: Accuracy vs. computational efficiency, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 44 (1997), 997-1009. doi: 10.1109/58.655625. |
[8] | C. Cueto, O. Bates, G. Strong, J. Cudeiro, F. Luporini, Ò. Calderón Agudo, G. Gorman, L. Guasch and M. Tang, Stride: A flexible software platform for high-performance ultrasound computed tomography, Computer Methods and Programs in Biomedicine, 221 (2022), 106855. doi: 10.1016/j.cmpb.2022.106855. |
[9] | J. R. Doherty, G. E. Trahey, K. R. Nightingale and M. L. Palmeri, Acoustic radiation force elasticity imaging in diagnostic ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60 (2013), 685-701. doi: 10.1109/TUFFC.2013.2617. |
[10] | Y. Du, H. Jensen and J. A. Jensen, Investigation of an angular spectrum approach for pulsed ultrasound fields, Ultrasonics, 53 (2013), 1185-1191. doi: 10.1016/j.ultras.2013.02.011. |
[11] | A. Fenster and J. C. Lacefield, Ultrasound Imaging and Therapy, CRC Press, 2015. doi: 10.1201/b18467. |
[12] | M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, 93 (2005), 216-231. doi: 10.1109/JPROC.2004.840301. |
[13] | D. Garcia, SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples, Computer Methods and Programs in Biomedicine, 218 (2022), 106726. doi: 10.1016/j.cmpb.2022.106726. |
[14] | G. R. Harris, Transient field of a baffled planar piston having an arbitrary vibration amplitude distribution, The Journal of the Acoustical Society of America, 70 (1981), 186-204. doi: 10.1121/1.386671. |
[15] | J. A. Jensen, A model for the propagation and scattering of ultrasound in tissue, J. Acoust. Soc. Am. 1991 Jan., 89 (1991), 182-191. doi: 10.1121/1.400497. |
[16] | J. A. Jensen, FIELD: A program for simulating ultrasound systems, Medical and Biological Engineering and Computing, 34 (1996), 351-352. |
[17] | J. A. Jensen, Linear Description of Ultrasound Imaging Systems: Notes for the International Summer School on Advanced Ultrasound Imaging at the Technical University of Denmark, Technical University of Denmark, Department of Electrical Engineering, 1999. |
[18] | J. A. Jensen, A new calculation procedure for spatial impulse responses in ultrasound, The Journal of the Acoustical Society of America, 105 (1999), 3266-3274. doi: 10.1121/1.424654. |
[19] | J. A. Jensen, Ultrasound Imaging and its Modeling, Springer Berlin Heidelberg, Berlin, Heidelberg, (2002), 135-166. |
[20] | J. A. Jensen, A multi-threaded version of Field II, in 2014 IEEE International Ultrasonics Symposium, (2014), 2229-2232. doi: 10.1109/ULTSYM.2014.0555. |
[21] | J. A. Jensen and N. B. Svendsen, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39 (1992), 262-267. doi: 10.1109/58.139123. |
[22] | J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942-1948. doi: 10.1109/ICNN.1995.488968. |
[23] | Y. Li and J. A. Zagzebski, A frequency domain model for generating B-mode images with array transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46 (1999), 690-699. doi: 10.1109/58.764855. |
[24] | C. Razzetta, M. Crocco and F. Benvenuto, Parallel parametric UltraSound Transmission software (parUST)(version v1: 2023-05-29), GitHub: https://github.com/chiararazzetta/parUST, 2023. |
[25] | C. Razzetta, M. Crocco and F. Benvenuto, A stochastic approach to delays optimization for narrowband transmit beam pattern in medical ultrasound, 2023. arXiv: 2209.05758 doi: https://doi.org/10.48550/arXiv.2209.05758. |
[26] | T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, Academic press, 2004. |
[27] | M. Tanter and M. Fink, Ultrafast imaging in biomedical ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (2014), 102-119. doi: 10.1109/TUFFC.2014.2882. |
[28] | B. E. Treeby and B. T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics, 15 (2010), 021314. doi: 10.1117/1.3360308. |
[29] | C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Math. Appl., 297, Kluwer Academic Publishers Group, Dordrecht, 1994. doi: 10.1007/978-94-015-8390-9. |
[30] | F. Varray, A. Ramalli, C. Cachard, P. Tortoli and O. Basset, Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58 (2011), 1366-1376. doi: 10.1109/TUFFC.2011.1956. |
[31] | P. A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), (2016), 261-265. doi: 10.1109/ICGTSPICC.2016.7955308. |
[32] | A. I. Villalba, T. Landry and J. Brown, Parallel computing using Python-based software for a high-frequency ultrasound system, The Journal of the Acoustical Society of America, 146 (2019), 3073-3073. doi: 10.1121/1.5137663. |
[33] | U. Vyas and D. Christensen, Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59 (2012), 1093-1100. doi: 10.1109/TUFFC.2012.2300. |
[34] | B. Yu, H. Jin, Y. Mei, J. Chen, E. Wu and K. Yang, 3-D ultrasonic image reconstruction in frequency domain using a virtual transducer model, Ultrasonics, 118 (2022), 106573. doi: 10.1016/j.ultras.2021.106573. |
Depiction of a beam pattern resulting from a linear-array probe with
Behaviour of the sinc function with increasing number of cycles
Depiction of the geometry adopted for the calculation of a spatial impulse response for a fixed field point
Average BP error
Comparison of generated wideband BPs in different settings. On each column from the left: BPs generated with our simulator parUST, BPs from FIELD II, their absolute difference, and the distribution of pixel value differences. The unity of measure is dB
Comparison of generated narrowband BPs in different settings. On each column from the left: BPs generated with our simulator parUST, BPs from FIELD II, their absolute difference, and the distribution of pixel value differences. The unity of measure is dB
Comparison of generated narrowband BPs using a
Examples of the parameters' domain for a linear-array probe. From the top, each row corresponds to a different fixed frequency