Property | Value | Comments |
Cost LF/HF | 0.07 | LF= Euler, HF= RANS |
Error LF/HF | 0.18 | - |
Cost MF/HF | 0.13 | MF= 1 HF + 17 LF |
Error MF/HF | 0.05 | - |
Multi-fidelity models provide a framework for integrating computational models of varying complexity, allowing for accurate predictions while optimizing computational resources. These models are especially beneficial when acquiring high-accuracy data is costly or computationally intensive. This review offers a comprehensive analysis of multi-fidelity models, focusing on their applications in scientific and engineering fields, particularly in optimization and uncertainty quantification. It classifies publications on multi-fidelity modeling according to several criteria, including application area, surrogate model selection, types of fidelity, combination methods and year of publication. The study investigates techniques for combining different fidelity levels, with an emphasis on multi-fidelity surrogate models. This work discusses reproducibility, open-sourcing methodologies and benchmarking procedures to promote transparency. The manuscript also includes educational toy problems to enhance understanding. Additionally, this paper outlines best practices for presenting multi-fidelity-related savings in a standardized, succinct and yet thorough manner. The review concludes by examining current trends in multi-fidelity modeling, including emerging techniques, recent advancements, and promising research directions.
Citation: |
Figure 2. Within the frame of multi-fidelity modeling, surrogate models are commonly used to integrate information from different fidelities. When constructing a surrogate model that combines fidelities explicitly, such as co-Kriging, the resulting approach is referred to as a multi-fidelity surrogate model. In contrast, multi-fidelity hierarchical models combine fidelities without requiring to build an explicit multi-fidelity surrogate model architecture. Methods such as importance sampling fall under the multi-fidelity hierarchical category
Figure 3. Proportions of different attributes found in the reviewed multi-fidelity literature [78]
Figure 7. Proportion of deterministic and non-deterministic methods utilized for constructing multi-fidelity surrogate models based on the literature. The chart also displays the distribution of the combination methods introduced in Section 4.2 within each category, deterministic and non-deterministic methods
Figure 9. The cost ratio for a single analysis using a low-fidelity model compared to a high-fidelity model (known as the LFA/HFA cost ratio) is measured against the cost ratio for completing an optimization process with a multi-fidelity surrogate model versus a high-fidelity model (termed the MFO/HFO cost ratio). The dashed line in the graph serves as a threshold; points below this line suggest that using multi-fidelity models does not result in speed-ups
Figure 14. One-dimensional analytic example illustrating the concept of comprehensive correction [242]
Figure 16. One-dimensional analytic example illustrating the concept of comprehensive correction [242]
Figure 17. One-dimensional co-Kriging example. [242]
Table 1. The 2016 study by Padrón et al. [164] serves as an exemplary guide for authors on how to report costs, savings and accuracy metrics
Property | Value | Comments |
Cost LF/HF | 0.07 | LF= Euler, HF= RANS |
Error LF/HF | 0.18 | - |
Cost MF/HF | 0.13 | MF= 1 HF + 17 LF |
Error MF/HF | 0.05 | - |
Table 2. Categorization of fluid-mechanics-focused papers based on the methodologies employed as high- and low-fidelity models. The analysis techniques used in these studies were analyzed and categorized into six distinct categories: analytical approach (An), empirical methods (Em), linear analysis (Li), potential flow models (PF), Euler analysis (Eu) and Reynolds-averaged Navier-Stokes techniques (RANS)
Fluid mechanics | ||||||
Reference | An | Em | Li | PF | Eu | RANS |
[83] [216] | LF | - | HF | - | - | - |
[8] [26] [31] [45] [68] [71] | - | LF | HF | - | - | |
[154] [155] [162] [218] | - | LF | - | - | - | HF |
[32] [56] [73] [114] [123] [143] [144] [165] [180] | - | - | LF | - | HF | - |
[42] [50] [212] [244] [245] | LF | HF | ||||
[13] [106] [159] [230] | - | - | - | LF | - | HF |
[6] [76] [90] [97] [164] [184] | - | - | - | LF | HF |
Table 3. Distinct types of fidelity implemented in research papers on fluid mechanics differ from those based on analysis type. The classifications include dimensionality (2D/3D), analysis resolution (coarse vs. refined), type of study (simulations vs. experiments), state of flow (transient vs. steady) and degree of solution convergence (semiconverged vs. converged). The following abbreviations designate each paper's physical model: Em (empirical), Li (linear), PF (potential flow), Eu (Euler), RANS (Reynolds-averaged Navier-Stokes), URANS (unsteady RANS), TM (turbulence method), MHD (magnetohydrodynamics), AE (aeroelastic equations), MPF (multiphase flow) and TM (thermomechanical equations)
Fluid mechanics | |
Fidelity type | Reference |
Dimensionality | [68] 2D/3D Eu, [102] 1D/3D RANS+TM, [106] 2D/3D URANS, [127] 2D/3D, [175] 1D/2D RANS, [190] 1D/2D Li, [215] 1D/3D RANS, [229] 1D/3D RANS, [248] 1D, 2D/3D RANS |
Coarse/Refined | [5] Eu, [30] RANS, [41] Eu, [42] Eu, [64] Eu, [43] Li/Eu, [103] RANS, [109] MPF, [112] MHD, [118] Eu, [119], Eu[122] Eu, [135] Eu, [142] RANS, [185] RANS, [210] RANS, [238] Eu/RANS |
Exp./Sim. | [65] Euler/MHD, [67] PF/Em, [124] RANS, [211] RANS |
Semiconverged/Converged | [103], RANS[119] Eu |
Steady/Transient | [24] AE, [75] Eu, [210] TM |
Table 4. Categorization of papers within the domain of solid mechanics, according to the fidelity type employed in their analyses. The four fidelity types included are analytical (An), empirical (Em), linear (Li) and non-linear (NL)
Table 5. Categorization of solid mechanics research papers according to the type of fidelity used. The fidelity categories are defined based on dimensionality (i.e., 2D/3D), degree of refinement (i.e., coarse vs. refined) and simplification of boundary conditions (i.e., infinite plate vs. finite plate). Each paper is associated with the corresponding model employed, with Li indicating the use of linear models and NL representing non-linear models
Solid mechanics | |
Fidelity type | Reference |
Dimensionality | [131] 1D/2D Li, [130] 1D/3D, [146] 2D/3D, [147] 2D/3D Li, [200] 2D/3D Li, [202] 2D/3D NL |
Coarse/Refined | [17] Li, [25] NL, [27] Li, [29] NL, [37] Li, [133] Li, [145] Li, [203] NL, [204] NL, [227] Li, [236] Li, [237] Li |
Boundary conditions | [223] Li, [226] Li |
Table 6. Papers that use deterministic methods for constructing multi-fidelity surrogate models
Deterministic methods | |
Combining method | Reference |
Additive correction | [17] [16] [32] [58] [82] [114] [165] [189] [191] [194] [199] [200] [204] [203] [214] [222] [226] |
Multiplicative correction | [4] [5][17] [16] [31] [32] [37] [82] [87] [93] [98] [107] [142] [147] [158] [189] [191] [199] [200] [204] [203] [214] [219] [220] [223] [225] [226] [227] |
Comprehensive correction | [59] [76] [111] [160] [192] [236] [237] |
Space mapping | [34] [103] [122] [184] [190] |
Table 7. Papers that use non-deterministic methods to construct multi-fidelity surrogate models
Non-deterministic methods | |
Combining method | Reference |
Additive correction | [25] [68] [90] [112] [144] [145] [170] [175] [180] |
Multiplicative correction | [40] [67] [143] |
Comprehensive correction | [8] [29] [30][71] [81] [97] [108] [109] [124] [129] [128] [131] [130] [134] [173] [209] [211] [235] |
Calibration + comprehensive correction | [23] [65] [94] [110] |
Table 8. MFM/HFM cost ratio. The references are divided also per field, given by fluid mechanics, solid mechanics and other. Other includes electronics, aeroelasticity, thermodynamics and analytical functions
[1] |
G. N. Absi and S. Mahadevan, Multi-fidelity approach to dynamics model calibration, Mechanical Systems and Signal Processing, 68 (2016), 189-206.
doi: 10.1016/j.ymssp.2015.07.019.![]() ![]() |
[2] |
S. E. Ahmed and P. Stinis, A multifidelity deep operator network approach to closure for multiscale systems, Computer Methods in Applied Mechanics and Engineering, 414 (2023), 116161, 23 pp.
doi: 10.1016/j.cma.2023.116161.![]() ![]() ![]() |
[3] |
A. C. Aitken, On least squares and linear combination of observations, Proceedings of the Royal Society of Edinburgh, 55 (1936), 42-48.
doi: 10.1017/S0370164600014346.![]() ![]() |
[4] |
N. M. Alexandrov, J. Dennis, R. M. Lewis and V. Torczon, A trust-region framework for managing the use of approximation models in optimization, Structural and Multidisciplinary Optimization, 15 (1998), 16-23.
doi: 10.1007/BF01197433.![]() ![]() |
[5] |
N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green and P. A. Newman, Approximation and model management in aerodynamic optimization with variable-fidelity models, Journal of Aircraft, 38 (2001), 1093-1101.
doi: 10.2514/2.2877.![]() ![]() |
[6] |
N. M. Alexandrov, E. Nielsen, R. Lewis and W. Anderson, First-order model management with variable-fidelity physics applied to multi-element airfoil optimization, in 8th symposium on multidisciplinary analysis and optimization, (2000), 4886.
doi: 10.2514/6.2000-4886.![]() ![]() |
[7] |
D. L. Allaire, D. Kordonowy, M. Lecerf, L. Mainini and K. E. Willcox, Multifidelity DDDAS methods with application to a self-aware aerospace vehicle, Procedia Computer Science, 29 (2014), 1182-1192.
doi: 10.1016/j.procs.2014.05.106.![]() ![]() |
[8] |
D. L. Allaire and K. E. Willcox, A mathematical and computational framework for multifidelity design and analysis with computer models, International Journal for Uncertainty Quantification, 4 (2014), 1-20.
doi: 10.1615/Int.J.UncertaintyQuantification.2013004121.![]() ![]() ![]() |
[9] |
D. L. Allaire, K. E. Willcox and O. Toupet, A bayesian-based approach to multifidelity multidisciplinary design optimization, in 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2010.
doi: 10.2514/6.2010-9183.![]() ![]() |
[10] |
R. Anirudh and J. J. Thiagarajan, $\Delta$-UQ: Accurate uncertainty quantification via anchor marginalization, arXiv preprint, arXiv: 2110.02197, (2021), 1-12.
![]() |
[11] |
B. Ankenman, B. L. Nelson and J. Staum, Stochastic kriging for simulation metamodeling, Operations Research, 58 (2010), 371-382.
doi: 10.1287/opre.1090.0754.![]() ![]() ![]() |
[12] |
S. Ardabili, A. Mosavi and A. R. Várkonyi-Kóczy, Advances in machine learning modeling reviewing hybrid and ensemble methods, in Engineering for Sustainable Future: Selected Papers of the 18th International Conference on Global Research and Education Inter-Academia–2019 18, Springer, (2020), 215-227.
doi: 10.1007/978-3-030-36841-8_21.![]() ![]() |
[13] |
S. Bahrami, C. Tribes, C. Devals, T. Vu and F. Guibault, Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm, Applied Mathematical Modelling, 40 (2016), 1650-1668.
doi: 10.1016/j.apm.2015.09.008.![]() ![]() ![]() |
[14] |
M. H. Bakr, J. W. Bandler, R. M. Biernacki, S. H. Chen and K. Madsen, A trust region aggressive space mapping algorithm for EM optimization, IEEE Transactions on Microwave Theory and Techniques, 46 (1998), 1759-1762.
doi: 10.1109/MWSYM.1998.700811.![]() ![]() |
[15] |
M. H. Bakr, J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez and Q. J. Zhang, Neural space mapping EM optimization of microwave structures, IEEE MTT-S International Microwave Symposium Digest, 2 (2000), 879-882.
doi: 10.1109/MWSYM.2000.863320.![]() ![]() |
[16] |
V. O. Balabanov, A. A. Giunta, O. Golovidov, B. Grossman, W. H. Mason, L. T. Watson and R. T. Haftka, Reasonable design space approach to response surface approximation, Journal of Aircraft, 36 (1999), 308-315.
doi: 10.2514/2.2438.![]() ![]() |
[17] |
V. Balabanov, R. T. Haftka, B. Grossman, W. H. Mason and L. T. Watson, Multifidelity response surface model for HSCT wing bending material weight, in Proc. 7th. AIAA/USAF/NASA/ISSMO Symposium on Multidisiplinary Analysis and Optimization, (1998), 2-4.
doi: 10.2514/6.1998-4804.![]() ![]() |
[18] |
J. Bandler, Have you ever wondered about the engineer's mysterious 'feel' for a problem?, IEEE Canadian Rev., (2013), 50-60.
![]() |
[19] |
J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny and R. H. Hemmers, Space mapping technique for electromagnetic optimization, IEEE Transactions on Microwave Theory and Techniques, 42 (1994), 2536-2544.
doi: 10.1109/22.339794.![]() ![]() |
[20] |
J. W. Bandler, R. M. Biernacki, S. H. Chen, R. H. Hemmers and K. Madsen, Electromagnetic optimization exploiting aggressive space mapping, IEEE Transactions on Microwave Theory and Techniques, 43 (1995), 2874-2882.
doi: 10.1109/22.475649.![]() ![]() |
[21] |
J. W. Bandler, Q. S. Cheng, S. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen and J. Sondergaard, Space mapping: The state of the art, Microwave Theory and Techniques, IEEE Transactions on, 52 (2004), 337-361.
![]() |
[22] |
J. W. Bandler, Q. S. Cheng, N. K. Nikolova and M. A. Ismail, Implicit space mapping optimization exploiting preassigned parameters, IEEE Transactions on Microwave Theory and Techniques, 52 (2004), 378-385.
doi: 10.1109/TMTT.2003.820892.![]() ![]() |
[23] |
M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin and J. Tu, A framework for validation of computer models, Technometrics, 49 (2007), 138-154.
doi: 10.1198/004017007000000092.![]() ![]() ![]() |
[24] |
M. Berci, P. Gaskell, R. Hewson and V. Toropov., Multifidelity metamodel building as a route to aeroelastic optimization of flexible wings, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225 (2011), 2115-2137.
doi: 10.1177/0954406211403549.![]() ![]() |
[25] |
J. Biehler, M. W. Gee and W. A. Wall, Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a bayesian multi-fidelity scheme, Biomechanics and modeling in mechanobiology, 14 (2015), 489-513.
doi: 10.1007/s10237-014-0618-0.![]() ![]() |
[26] |
D. Böhnke, J. Jepsen, T. Pfeiffer, B. Nagel, V. Gollnick and C. Liersch, An integrated method for determination of the oswald factor in a multi-fidelity design environment, in 3rd CEAS Air & Space Conference, Venice, Italy, 2011.
![]() |
[27] |
D. Böhnke, B. Nagel and V. Gollnick, An approach to multi-fidelity in conceptual aircraft design in distributed design environments, in Aerospace Conference, 2011 IEEE, IEEE, (2011), 1-10.
doi: 10.1109/AERO.2011.5747542.![]() ![]() |
[28] |
G. E. P. Box and K. B. Wilson, On the experimental attainment of optimum conditions, in Breakthroughs in Statistics: Methodology and Distribution, Springer, (1992), 270-310.
doi: 10.1007/978-1-4612-4380-9_23.![]() ![]() |
[29] |
P. J. Bradley, A multi-fidelity based adaptive sampling optimisation approach for the rapid design of double-negative metamaterials, Progress In Electromagnetics Research B, 55 (2013), 87-114.
doi: 10.2528/PIERB13071003.![]() ![]() |
[30] |
C. J. Brooks, A. Forrester, A. Keane and S. Shahpar, Multi-fidelity design optimisation of a transonic compressor rotor, in 9th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Istanbul, Tukey, 2011.
![]() |
[31] |
S. Burgee, A. A. Giunta, V. Balabanov, B. Grossman, W. H. Mason, R. Narducci, R. T. Haftka and L. T. Watson, A coarse-grained parallel variable-complexity multidisciplinary optimization paradigm, International Journal of High Performance Computing Applications, 10 (1996), 269-299.
doi: 10.1177/109434209601000402.![]() ![]() |
[32] |
S. L. Burgee, L. T. Watson, A. Giunta, B. Grossman, R. T. Haftka and W. H. Mason, Parallel multipoint variable-complexity approximations for multidisciplinary optimization, In Scalable High-Performance Computing Conference, 1994, Proceedings of the, IEEE, (1994), 734-740.
doi: 10.1109/SHPCC.1994.296714.![]() ![]() |
[33] |
S. Burton and P. Hajela, A variable-complexity approach to second-order reliability-based optimization, Structural and Multidisciplinary Optimization, 25 (2003), 237-250.
doi: 10.1007/s00158-003-0298-3.![]() ![]() |
[34] |
J. P. Castro Jr., G. Anne Gray, P. Diane Hough and A. An. Giunta, Developing a Computationally Efficient Dynamic Multilevel Hybrid Optimization Scheme using Multifidelity Model Interactions, Citeseer, 2006.
![]() |
[35] |
N. Celik, S. Lee, K. Vasudevan and Y. Son, DDDAS-based multi-fidelity simulation framework for supply chain systems, IIE Transactions, 42 (2010), 325-341.
doi: 10.1080/07408170903394306.![]() ![]() |
[36] |
S. Chakraborty, Transfer learning based multi-fidelity physics informed deep neural network, Journal of Computational Physics, 426 (2021), 109942, 18 pp.
doi: 10.1016/j.jcp.2020.109942.![]() ![]() ![]() |
[37] |
K. J. Chang, R. T. Haftka, G. L. Giles and P.-J. Kao, Sensitivity-based scaling for approximating structural response, Journal of Aircraft, 30 (1993), 283-288.
doi: 10.2514/3.48278.![]() ![]() |
[38] |
A. Chaudhuri, A. N. Marques and K. Willcox, mfEGRA: Multifidelity efficient global reliability analysis through active learning for failure boundary location, Structural and Multidisciplinary Optimization, 64 (2021), 797-811.
doi: 10.1007/s00158-021-02892-5.![]() ![]() ![]() |
[39] |
A. Chaudhuri and K. E. Willcox, Multifidelity uncertainty propagation in coupled multidisciplinary systems, in 18th AIAA Non-Deterministic Approaches Conference, (2016), 1442.
doi: 10.2514/6.2016-1442.![]() ![]() |
[40] |
R. Chen, J. Xu, S. Zhang, C.-H. Chen and L. H. Lee, An effective learning procedure for multi-fidelity simulation optimization with ordinal transformation, in Automation Science and Engineering (CASE), 2015 IEEE International Conference on, IEEE, (2015), 702-707.
doi: 10.1109/CoASE.2015.7294163.![]() ![]() |
[41] |
S. Choi, J. Alonso and I. Kroo, Multi-fidelity design optimization studies for supersonic jets using surrogate management frame method, in 23rd AIAA Applied Aerodynamics Conference, (2005), 5077.
doi: 10.2514/6.2005-5077.![]() ![]() |
[42] |
S. Choi, J. J. Alonso, I. M. Kroo and M. Wintzer, Multi-fidelity design optimization of low-boom supersonic business multi-fidelity design optimization of low-boom supersonic business jets, in Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Citeseer, 1997.
![]() |
[43] |
S. Choi, J. J. Alonso, I. M. Kroo and M. Wintzer, Multifidelity design optimization of low-boom supersonic jets, Journal of Aircraft, 45 (2008), 106-118.
doi: 10.2514/1.28948.![]() ![]() |
[44] |
J. A. Christen and C. Fox, Markov chain Monte Carlo using an approximation, Journal of Computational and Graphical Statistics, 14 (2005), 795-810.
doi: 10.1198/106186005X76983.![]() ![]() ![]() |
[45] |
D. E. Christensen, Multifidelity Methods for Multidisciplinary Design Under Uncertainty, PhD thesis, Massachusetts Institute of Technology, 2012.
![]() |
[46] |
H. S. Chung and J. Alonso, Design of a low-boom supersonic business jet using cokriging approximation models, in 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, (2002), 5598.
doi: 10.2514/6.2002-5598.![]() ![]() |
[47] |
A. Coppe, M. J. Pais, R. T. Haftka and N. H. Kim, Using a simple crack growth model in predicting remaining useful life, Journal of Aircraft, 49 (2012), 1965-1973.
doi: 10.2514/1.C031808.![]() ![]() |
[48] |
S. De, M. Reynolds, M. Hassanaly, R. N. King and A. Doostan, Bi-fidelity modeling of uncertain and partially unknown systems using DeepONets, Computational Mechanics, 71 (2023), 1251-1267.
doi: 10.1007/s00466-023-02272-4.![]() ![]() ![]() |
[49] |
P. F. de Aguiar, B. Bourguignon, M. Khots, D. Massart and R. Phan-Than-Luu, D-optimal designs, Chemometrics and Intelligent Laboratory Systems, 30 (1995), 199-210.
doi: 10.1016/0169-7439(94)00076-X.![]() ![]() |
[50] |
A. DeBlois and M. Abdo, Multi-fidelity multidisciplinary design optimization of metallic and composite regional and business jets, AIAA Paper, 9191 (2010), 2011.
doi: 10.2514/6.2010-9191.![]() ![]() |
[51] |
S. Dey and K. K. Gupta, Uncertainty quantification-an eternal future of engineering and technology, in Engineering Pedagogy: A Collection of Articles in Honor of Prof. Amitabha Ghosh, Springer, (2023), 145-155.
doi: 10.1007/978-981-19-8016-9_11.![]() ![]() |
[52] |
H. Dong, B. Song, P. Wang and S. Huang, Multi-fidelity information fusion based on prediction of kriging, Structural and Multidisciplinary Optimization, 51 (2015), 1267-1280.
doi: 10.1007/s00158-014-1213-9.![]() ![]() |
[53] |
N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, 1966.
![]() ![]() |
[54] |
C. Dribusch, S. Missoum and P. Beran, A multifidelity approach for the construction of explicit decision boundaries: Application to aeroelasticity, Structural and Multidisciplinary Optimization, 42 (2010), 693-705.
doi: 10.1007/s00158-010-0516-8.![]() ![]() |
[55] |
M. A. Drissaoui, S. Lanteri, P. Lévêque, F. Musy, L. Nicolas, R. Perrussel and D. Voyer, A stochastic collocation method combined with a reduced basis method to compute uncertainties in numerical dosimetry, IEEE Transactions on Magnetics, 48 (2012), 563-566.
doi: 10.1109/TMAG.2011.2174347.![]() ![]() |
[56] |
S. Dufresne, C. Johnson and D. N. Mavris, Variable fidelity conceptual design environment for revolutionary unmanned aerial vehicles, Journal of Aircraft, 45 (2008), 1405-1418.
doi: 10.2514/1.35567.![]() ![]() |
[57] |
K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad, M. Lindauer and F. Hutter, Hpobench: A collection of reproducible multi-fidelity benchmark problems for HPO, arXiv preprint, arXiv: 2109.06716, (2021), 1-36.
![]() |
[58] |
M. S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, AIAA Paper, 2274 (2009), 37.
doi: 10.2514/6.2009-2274.![]() ![]() |
[59] |
M. S. Eldred and D. Dunlavy, Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models, in Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, number AIAA-2006-7117, Portsmouth, VA, 199 (2006).
doi: 10.2514/6.2006-7117.![]() ![]() |
[60] |
M. S. Eldred, A. Giunta and S. Collis, Second-order corrections for surrogate-based optimization with model hierarchies, in 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (2004), 4457.
doi: 10.2514/6.2004-4457.![]() ![]() |
[61] |
W. A. Falcon, Pytorch lightning, GitHub, (2019), 1-2.
![]() |
[62] |
I.-G. Farcas, B. Peherstorfer, T. Neckel, F. Jenko and H.-J. Bungartz, Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification, Computer Methods in Applied Mechanics and Engineering, 406 (2023), 115908.
doi: 10.1016/j.cma.2023.115908.![]() ![]() |
[63] |
M. G. Fernández-, A. Diggs, C. Park, N. H. Kim and R. T. Haftka, Anomaly detection using groups of simulations, in 18th AIAA Non-Deterministic Approaches Conference, (2016), 1195.
doi: 10.2514/6.2016-1195.![]() ![]() |
[64] |
M. G. Fernández-Godino, S. Dubreuil, N. Bartoli, C. Gogu, S. Balachandar and R. T. Haftka, Linear regression-based multifidelity surrogate for disturbance amplification in multiphase explosion, Structural and Multidisciplinary Optimization, 60 (2019), 2205-2220.
doi: 10.1007/s00158-019-02387-4.![]() ![]() |
[65] |
K. Fidkowski, Quantifying Uncertainties in Radiation Hydrodynamics Models, PhD thesis, University of Michigan, 2014.
![]() |
[66] |
C. C. Fischer, R. V. Grandhi and P. S. Beran, Bayesian low-fidelity correction approach to multi-fidelity aerospace design, In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2017), 133.
doi: 10.2514/6.2017-0133.![]() ![]() |
[67] |
A. Forrester, Black-box calibration for complex-system simulation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 3567-3579.
doi: 10.1098/rsta.2010.0051.![]() ![]() |
[68] |
A. Forrester, N. W. Bressloff and A. J. Keane, Optimization using surrogate models and partially converged computational fluid dynamics simulations, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 462 (2006), 2177-2204.
doi: 10.1098/rspa.2006.1679.![]() ![]() |
[69] |
A. I. J. Forrester and A. J. Keane, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, 45 (2009), 50-79.
![]() |
[70] |
A. Forrester, A. Sóbester and A. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, John Wiley & Sons, 2008.
![]() |
[71] |
A. I. Forrester, A. Sóbester and A. J. Keane, Multi-fidelity optimization via surrogate modelling, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 463 (2007), 3251-3269.
doi: 10.1098/rspa.2007.1900.![]() ![]() ![]() |
[72] |
S. E. Gano, J. E. Renaud and B. Sanders, Hybrid variable fidelity optimization by using a kriging-based scaling function, AIAA Journal, 43 (2005), 2422-2433.
doi: 10.2514/1.12466.![]() ![]() |
[73] |
K. A. Geiselhart, L. P. Ozoroski, J. W. Fenbert, E. W. Shields and W. Li, Integration of multifidelity multidisciplinary computer codes for design and analysis of supersonic aircraft, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, AIAA Paper, 2011 (2011), 465.
doi: 10.2514/6.2011-465.![]() ![]() |
[74] |
R. Ghanem and P. D. Spanos, Polynomial chaos in stochastic finite elements, Journal of Applied Mechanics, 57 (1990), 197-202.
doi: 10.1115/1.2888303.![]() ![]() |
[75] |
S. S. Ghoman, R. K. Kapania, D. Chen, P. Sarhaddi and D. Y. Lee, Multifidelity, multistrategy, and multidisciplinary design optimization environment, Journal of Aircraft, 49 (2012), 1255-1270.
doi: 10.2514/1.C031507.![]() ![]() |
[76] |
M. Ghoreyshi, K. Badcock and M. Woodgate, Integration of multi-fidelity methods for generating an aerodynamic model for flight simulation, in 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, (2008), 197.
doi: 10.2514/6.2008-197.![]() ![]() |
[77] |
M. Giselle Fernández-Godino, D. D. Lucas and Q. Kong, Predicting wind-driven spatial deposition through simulated color images using deep autoencoders, Scientific Reports, 13 (2023), 1394. Nature Publishing Group UK London.
doi: 10.1038/s41598-023-28590-4.![]() ![]() |
[78] |
M. Giselle Fernández-Godino, C. Park, N. H. Kim and R. T. Haftka, Issues in deciding whether to use multifidelity surrogates, AIAA Journal, 57 (2019), 2039-2054.
doi: 10.2514/1.J057750.![]() ![]() |
[79] |
A. A. Giunta, R. Narducci, S. Burgee, B. Grossman, W. H. Mason, L. T. Watson and R. T. Haftka, Variable-complexity response surface aerodynamic design of an HSCT wing, Proceedings of the 13th AIAA Applied Aerodynamics Conference, 19 (1995), 994-1002.
doi: 10.2514/6.1995-1886.![]() ![]() |
[80] |
T. Goel, R. T. Hafkta and W. Shyy, Comparing error estimation measures for polynomial and kriging approximation of noise-free functions, Structural and Multidisciplinary Optimization, 38 (2009), 429-442.
doi: 10.1007/s00158-008-0290-z.![]() ![]() |
[81] |
J. Goh, D. Bingham, J. P. Holloway, M. J. Grosskopf, C. C. Kuranz and E. Rutter, Prediction and computer model calibration using outputs from multifidelity simulators, Technometrics, 55 (2013), 501-512.
doi: 10.1080/00401706.2013.838910.![]() ![]() ![]() |
[82] |
Y. Goldfeld, K. Vervenne, J. Arbocz and F. Van Keulen, Multi-fidelity optimization of laminated conical shells for buckling, Structural and Multidisciplinary Optimization, 30 (2005), 128-141.
doi: 10.1007/s00158-004-0506-9.![]() ![]() |
[83] |
M. Goldsmith, B. Sankar, R. T. Haftka and R. Goldberg, Effects of microstructural variability on the mechanical properties of ceramic matrix composites, in American Society for Composites 26th Technical Conference, 2011.
![]() |
[84] |
I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT, Press, 2016.
![]() ![]() |
[85] |
M. Guo, A. Manzoni, M. Amendt, P. Conti and J. S. Hesthaven, Multi-fidelity regression using artificial neural networks: Efficient approximation of parameter-dependent output quantities, Computer Methods in Applied Mechanics and Engineering, 389 (2022), Paper No. 114378, 25 pp.
doi: 10.1016/j.cma.2021.114378.![]() ![]() ![]() |
[86] |
B. Haaland and P. Z. Qian, An approach to constructing nested space-filling designs for multi-fidelity computer experiments, Statistica Sinica, 20 (2010), 1063-1075.
![]() ![]() |
[87] |
R. T. Haftka, Combining global and local approximations, AIAA Journal, 29 (1991), 1523-1525.
doi: 10.2514/3.10768.![]() ![]() |
[88] |
J. Hammersley, Monte Carlo Methods, Springer Science & Business Media, 2013.
![]() |
[89] |
Z.-H. Han, S. Görtz and R. Zimmermann, Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function, Aerospace Science and Technology, 25 (2013), 177-189.
doi: 10.1016/j.ast.2012.01.006.![]() ![]() |
[90] |
Z.-H. Han, Zi mmerman and S. Görtz, Alternative cokriging method for variable-fidelity surrogate modeling, AIAA Journal, 50 (2012), 1205-1210.
doi: 10.2514/1.J051243.![]() ![]() |
[91] |
P. C. Hansen, V. Pereyra and G. Scherer, Least squares data fitting with applications, JHU, Press, 2013.
![]() ![]() |
[92] |
M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, Support vector machines, IEEE Intelligent Systems and their Applications, 13 (1998), 18-28.
doi: 10.1109/5254.708428.![]() ![]() |
[93] |
J. A. Hevesi, J. D. Istok and A. L. Flint, Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis, Journal of Applied Meteorology, 31 (1992), 661-676.
![]() |
[94] |
D. Higdon, M. C. Kennedy, J. C. Cavendish, J. A. Cafeo and R. D. Ryne, Combining field data and computer simulations for calibration and prediction, SIAM Journal on Scientific Computing, 26 (2004), 448-466.
doi: 10.1137/S1064827503426693.![]() ![]() ![]() |
[95] |
A. A. Howard, M. Perego, G. E. Karniadakis and P. Stinis, Multifidelity deep operator networks, arXiv preprint, arXiv: 2204.09157, (2022), 1-28.
![]() |
[96] |
D. Huang, T. T. Allen, W. Notz and R. A. Miller, Sequential kriging optimization using multiple-fidelity evaluations, Structural and Multidisciplinary Optimization, 32 (2006), 369-382.
doi: 10.1007/s00158-005-0587-0.![]() ![]() |
[97] |
L. Huang, Z. Gao and D. Zhang, Research on multi-fidelity aerodynamic optimization methods, Chinese Journal of Aeronautics, 26 (2013), 279-286.
doi: 10.1016/j.cja.2013.02.004.![]() ![]() |
[98] |
M. Hutchison, E. Unger, W. Mason, B. Grossman and R. T. Haftka, Variable-complexity aerodynamic optimization of a high-speed civil transport wing, Journal of Aircraft, 31 (1994), 110-116.
doi: 10.2514/3.46462.![]() ![]() |
[99] |
J. Jacobs, S. Koziel and S. Ogurtsov, Computationally efficient multi-fidelity Bayesian support vector regression modeling of planar antenna input characteristics, IEEE Trans. Antennas and Propagation, 61 (2013), 980-984.
doi: 10.1109/TAP.2012.2220513.![]() ![]() ![]() |
[100] |
R. Jin, W. Chen and A. Sudjianto, An efficient algorithm for constructing optimal design of computer experiments, Journal of Statistical Planning and Inference, 134 (2005), 268-287.
doi: 10.1016/j.jspi.2004.02.014.![]() ![]() ![]() |
[101] |
M. E. Johnson, L. M. Moore and D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, 26 (1990), 131-148.
doi: 10.1016/0378-3758(90)90122-B.![]() ![]() ![]() |
[102] |
M. M. Joly, T. Verstraete and G. Paniagua, Integrated multifidelity, multidisciplinary evolutionary design optimization of counterrotating compressors, Integrated Computer-Aided Engineering, 21 (2014), 249-261.
doi: 10.3233/ICA-140463.![]() ![]() |
[103] |
I. M. Jonsson, L. Leifsson, S. Koziel, Y. A. Tesfahunegn and A. Bekasiewicz, Shape optimization of trawl-doors using variable-fidelity models and space mapping, Procedia Computer Science, 51 (2015), 905-913.
doi: 10.1016/j.procs.2015.05.223.![]() ![]() |
[104] |
V. Kalivarapu and E. Winer, A multi-fidelity software framework for interactive modeling of advective and diffusive contaminant transport in groundwater, Environmental Modelling & Software, 23 (2008), 1370-1383.
doi: 10.1016/j.envsoft.2008.04.006.![]() ![]() |
[105] |
K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider and B. Póczos, Gaussian process bandit optimisation with multi-fidelity evaluations, Advances in Neural Information Processing Systems, 29 (2016).
![]() |
[106] |
M. Kandasamy, D. Peri, S. K. Ooi, P. Carrica, F. Stern, E. F. Campana, P. Osborne, J. Cote, N. Macdonald and N. de Waal, Multi-fidelity optimization of a high-speed foil-assisted semi-planing catamaran for low wake, Journal of Marine Science and Technology, 16 (2011), 143-156.
doi: 10.1007/s00773-011-0119-0.![]() ![]() |
[107] |
M. Kaufman, V. Balabanov, S. Burgee, A. Giunta, B. Grossman, W. Mason, L. Watson and R. T. Haftka, Variable-complexity response surface approximations for wing structural weight in HSCT design, Computational Mechanics, 18 (1996), 112-126.
doi: 10.2514/6.1996-89.![]() ![]() |
[108] |
A. J. Keane, Cokriging for robust design optimization, AIAA Journal, 50 (2012), 2351-2364.
doi: 10.2514/1.J051391.![]() ![]() |
[109] |
M. C. Kennedy and A. O'Hagan, Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87 (2000), 1-13.
doi: 10.1093/biomet/87.1.1.![]() ![]() ![]() |
[110] |
M. C. Kennedy and A. O'Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society Series B, Statistical Methodology, 63 (2001), 425-464.
doi: 10.1111/1467-9868.00294.![]() ![]() ![]() |
[111] |
H. S. Kim, M. E. Koc and J. Ni, A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network, International Journal of Machine Tools and Manufacture, 47 (2007), 211-222.
doi: 10.1016/j.ijmachtools.2006.04.007.![]() ![]() |
[112] |
W. Kleiber, S. R. Sain, M. J. Heaton, M. Wiltberger, C. S. Reese and D. Bingham, Parameter tuning for a multi-fidelity dynamical model of the magnetosphere, The Annals of Applied Statistics, 7 (2013), 1286-1310.
doi: 10.1214/13-AOAS651.![]() ![]() ![]() |
[113] |
J. P. Kleijnen, Kriging metamodeling in simulation: A review, European Journal of Operational Research, 192 (2009), 707-716.
doi: 10.1016/j.ejor.2007.10.013.![]() ![]() ![]() |
[114] |
D. L. Knill, A. A. Giunta, C. A. Baker, B. Grossman, W. H. Mason, R. T. Haftka and L. T. Watson, Response surface models combining linear and euler aerodynamics for supersonic transport design, Journal of Aircraft, 36 (1999), 75-86.
doi: 10.2514/2.2415.![]() ![]() |
[115] |
R. Kosonen and J. Shemeikka, The use of a simple simulation tool for energy analysis, VTT Building Technology, (1997), 1-8.
![]() |
[116] |
P.-S. Koutsourelakis, Accurate uncertainty quantification using inaccurate computational models, SIAM Journal on Scientific Computing, 31 (2009), 3274-3300.
doi: 10.1137/080733565.![]() ![]() ![]() |
[117] |
N. Koyuncu, S. J. Lee, K. K. Vasudevan, Y. J. Son and P. Sarfare, Dddas-based multi-fidelity simulation for online preventive maintenance scheduling in semiconductor supply chain, in Simulation Conference, 2007 Winter, IEEE, (2007), 1915-1923.
![]() |
[118] |
S. Koziel and L. Leifsson, Knowledge-based airfoil shape optimization using space mapping, in 30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana, (2012), 25-28.
doi: 10.2514/6.2012-3016.![]() ![]() |
[119] |
S. Koziel and L. Leifsson, Multi-level CFD-based airfoil shape optimization with automated low-fidelity model selection, Procedia Computer Science, 18 (2013), 889-898.
doi: 10.1016/j.procs.2013.05.254.![]() ![]() |
[120] |
S. Koziel, J. Meng, J. W. Bandler, M. H. Bakr and Q. S. Cheng, Accelerated microwave design optimization with tuning space mapping, IEEE Transactions on Microwave Theory and Techniques, 57 (2009), 383-394.
doi: 10.1109/TMTT.2008.2011313.![]() ![]() |
[121] |
S. Koziel and S. Ogurtsov, Robust multi-fidelity simulation-driven design optimization of microwave structures, in Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, IEEE, (2010), 201-204.
![]() |
[122] |
S. Koziel, Y. Tesfahunegn, A. Amrit and L. Leifsson, Rapid multi-objective aerodynamic design using co-kriging and space mapping, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2016), 0418.
doi: 10.2514/6.2016-0418.![]() ![]() |
[123] |
I. Kroo, K. E. Willcox, A. March, A. Haas, D. Rajnarayan and W. Kays, Multifidelity analysis and optimization for supersonic design, Technical Report NASA/CR-2010-216874, NASA, 2010.
![]() |
[124] |
Y. Kuya, K. Takeda, X. Zhang and A. Forrester, Multifidelity surrogate modeling of experimental and computational aerodynamic data sets, AIAA Journal, 49 (2011), 289-298.
doi: 10.2514/1.J050384.![]() ![]() |
[125] |
P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods, Mathematics of Computation, 37 (1981), 141-158.
doi: 10.1090/S0025-5718-1981-0616367-1.![]() ![]() ![]() |
[126] |
J. Laurenceau and P. Sagaut, Building efficient response surfaces of aerodynamic functions with kriging and cokriging, AIAA Journal, 46 (2008), 498-507.
doi: 10.2514/1.32308.![]() ![]() |
[127] |
D. S. Lazzara, R. Haimes and K. Willcox, Multifidelity geometry and analysis in aircraft conceptual design, in 19th AIAA Computational Fluid Dynamics, American Institute of Aeronautics and Astronautics, (2009), 22-25.
doi: 10.2514/6.2009-3806.![]() ![]() |
[128] |
L. Le Gratiet, Bayesian analysis of hierarchical multifidelity codes, SIAM/ASA Journal on Uncertainty Quantification, 1 (2013), 244-269.
doi: 10.1137/120884122.![]() ![]() ![]() |
[129] |
L. Le Gratiet, Multi-Fidelity Gaussian Process Regression for Computer Experiments, PhD thesis, Université Paris-Diderot-Paris VII, 2013.
![]() |
[130] |
L. Le Gratiet, C. Cannamela and B. Iooss, A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes, SIAM/ASA Journal on Uncertainty Quantification, 2 (2014), 336-363.
doi: 10.1137/130926869.![]() ![]() ![]() |
[131] |
L. Le Gratiet and C. Cannamela, Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes, Technometrics, 57 (2015), 418-427.
doi: 10.1080/00401706.2014.928233.![]() ![]() ![]() |
[132] |
L. Le Gratiet and J. Garnier, Recursive co-kriging model for design of computer experiments with multiple levels of fidelity, International Journal for Uncertainty Quantification, 4 (2014), 365-386.
doi: 10.1615/Int.J.UncertaintyQuantification.2014006914.![]() ![]() ![]() |
[133] |
S Leary, A Bhaskar and A Keane, Method of Generating a Multifidelity Model of a System, 2003.
![]() |
[134] |
S. J. Leary, A. Bhaskar and A. J. Keane, A knowledge-based approach to response surface modelling in multifidelity optimization, Journal of Global Optimization, 26 (2003), 297-319.
doi: 10.1023/A:1023283917997.![]() ![]() ![]() |
[135] |
S. Lee, T. Kim, S. O. Jun and K. Yee, Efficiency enhancement of reduced order model using variable fidelity modeling, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2016), 0465.
doi: 10.2514/6.2016-0465.![]() ![]() |
[136] |
S. Lee and B. D. Youn, Computer model calibration and design comparison on piezoelectric energy harvester, in Proc. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (Victoria), 2008.
doi: 10.2514/6.2008-6056.![]() ![]() |
[137] |
L. Leifsson and S. Koziel, Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: A review of recent progress, Journal of Computational Science, 10 (2015), 45-54.
doi: 10.1016/j.jocs.2015.01.003.![]() ![]() ![]() |
[138] |
D. Levin, The approximation power of moving least-squares, Mathematics of Computation of the American Mathematical Society, 67 (1998), 1517-1531.
doi: 10.1090/S0025-5718-98-00974-0.![]() ![]() ![]() |
[139] |
D. Liu and Y. Wang, Multi-fidelity physics-constrained neural network and its application in materials modeling, Journal of Mechanical Design, 141 (2019), 3-16.
doi: 10.1115/DETC2019-98115.![]() ![]() |
[140] |
L. Lu, R. Pestourie, S. G. Johnson and G. Romano, Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport, Physical Review Research, 4 (2022), 023210.
doi: 10.1103/PhysRevResearch.4.023210.![]() ![]() |
[141] |
T. Mackman, C. Allen, M. Ghoreyshi and K. Badcock, Comparison of adaptive sampling methods for generation of surrogate aerodynamic models, AIAA Journal, 51 (2013), 797-808.
![]() |
[142] |
J. I. Madsen and M. Langthjem, Multifidelity response surface approximations for the optimum design of diffuser flows, Optimization and Engineering, 2 (2001), 453-468.
![]() |
[143] |
A. March and K. E. Willcox, Constrained multifidelity optimization using model calibration, Structural and Multidisciplinary Optimization, 46 (2012), 93-109.
doi: 10.1007/s00158-011-0749-1.![]() ![]() |
[144] |
A. March and K. E. Willcox, Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives, AIAA Journal, 50 (2012), 1079-1089.
doi: 10.2514/6.2010-2912.![]() ![]() |
[145] |
A. March, K. E. Willcox and Q. Wang, Gradient-based multifidelity optimisation for aircraft design using bayesian model calibration, Aeronautical Journal, 115 (2011), 729.
doi: 10.1017/S0001924000006473.![]() ![]() |
[146] |
B. H. Mason, R. T. Haftka and E. Johnson, Analysis and design of composite curved channel frames, in Proc 5th AIAA/USAF/NASA/ISSMO Symp on Multidisciplinary Analysis and Optimization, (1994), 1023-1040.
doi: 10.2514/6.1994-4364.![]() ![]() |
[147] |
B. H. Mason, R. T. Haftka, E. R. Johnson and G. L. Farley, Variable complexity design of composite fuselage frames by response surface techniques, Thin-Walled Structures, 32 (1998), 235-261.
doi: 10.1016/S0263-8231(98)00016-0.![]() ![]() |
[148] |
J. McFarland, S. Mahadevan, V. Romero and L. Swiler, Calibration and uncertainty analysis for computer simulations with multivariate output, AIAA Journal, 46 (2008), 1253-1265.
![]() |
[149] |
X. Meng, H. Babaee and G. E. Karniadakis, Multi-fidelity Bayesian neural networks: Algorithms and applications, Journal of Computational Physics, 438 (2021), 110361, 16 pp.
doi: 10.1016/j.jcp.2021.110361.![]() ![]() ![]() |
[150] |
X. Meng and G. E. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems, Journal of Computational Physics, 401 (2020), 109020, 15 pp.
doi: 10.1016/j.jcp.2019.109020.![]() ![]() ![]() |
[151] |
F. Mentre, A. Mallet and D. Baccar, Optimal design in random-effects regression models, Biometrika, 84 (1997), 429-442.
doi: 10.1093/biomet/84.2.429.![]() ![]() ![]() |
[152] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21 (1949), 1087-1092.
doi: 10.2172/4390578.![]() ![]() |
[153] |
M. Mifsud, D. MacManus and S. Shaw, A variable-fidelity aerodynamic model using proper orthogonal decomposition, International Journal for Numerical Methods in Fluids, 82 (2016), 646-663.
doi: 10.1002/fld.4234.![]() ![]() ![]() |
[154] |
E. Minisci and M. Vasile, Robust design of a reentry unmanned space vehicle by multifidelity evolution control, AIAA Journal, 51 (2013), 1284-1295.
doi: 10.2514/1.J051573.![]() ![]() |
[155] |
E. Minisci, M. Vasile and H. Liqiang, Robust multi-fidelity design of a micro re-entry unmanned space vehicle, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225 (2011), 1195-1209.
doi: 10.1177/0954410011410124.![]() ![]() |
[156] |
A. Molina-Crist'obal, P. R. Palmer, B. A. Skinner and G. T. Parks, Multi-fidelity simulation modelling in optimization of a submarine propulsion system, in Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, IEEE, (2010), 1-6.
![]() |
[157] |
D. C. Montgomery and R. H. Myers, Response Surface Methodology: Process and Product Optimization using Designed Experiments. Wiley-Interscience Publications, 1995.
![]() |
[158] |
A. Narayan, C. Gittelson and D. Xiu, A stochastic collocation algorithm with multifidelity models, SIAM Journal on Scientific Computing, 36 (2014), A495-A521.
doi: 10.1137/130929461.![]() ![]() ![]() |
[159] |
A. Nelson, J. J. Alonso and T. H. Pulliam, Multi-fidelity aerodynamic optimization using treed meta-models, in 25th AIAA Applied Aerodynamics Conference, Miami, (2007), 25-28.
doi: 10.2514/6.2007-4057.![]() ![]() |
[160] |
L. W. Ng and M. Eldred, Multifidelity uncertainty quantification using nonintrusive polynomial chaos and stochastic collocation, in Proceedings of the 14th AIAA Non-Deterministic Approaches Conference, number AIAA-2012-1852, Honolulu, HI, 43 (2012).
![]() |
[161] |
L. W. Ng and K. E. Willcox, Multifidelity approaches for optimization under uncertainty, International Journal for Numerical Methods in Engineering, 100 (2014), 746-772.
doi: 10.1002/nme.4761.![]() ![]() ![]() |
[162] |
N. V. Nguyen, S. M. Choi, W. S. Kim, J. W. Lee, S. Kim, D. Neufeld and Y. H. Byun, Multidisciplinary unmanned combat air vehicle system design using multi-fidelity model, Aerospace Science and Technology, 26 (2013), 200-210.
doi: 10.1016/j.ast.2012.04.004.![]() ![]() |
[163] |
A. K. Owen, A. J. Daugherty, D. Garrard, H. C. Reynolds and R. D. Wright, A parametric starting study of an axial-centrifugal gas turbine engine using a one-dimensional dynamic engine model and comparisons to experimental results: Part 2-Simulation calibration and trade-off study, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, American Society of Mechanical Engineers, (1998), V002T02A012-V002T02A012.
doi: 10.1115/98-GT-471.![]() ![]() |
[164] |
A. S. Padrón, J. J. Alonso and M. S. Eldred, Multi-fidelity methods in aerodynamic robust optimization, in 18th AIAA Non-Deterministic Approaches Conference, AIAA, (2016), 680.
doi: 10.2514/6.2016-0680.![]() ![]() |
[165] |
A. S. Padrón, J. J. Alonso, F. Palacios, M. Barone and M. S. Eldred, Multi-fidelity uncertainty quantification: Application to a vertical axis wind turbine under an extreme gust, in 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 16-20 June 2014, Atlanta, GA, AIAA, 2014.
doi: 10.2514/6.2014-3013.![]() ![]() |
[166] |
C. Park, R. T. Haftka and N. H. Kim, Remarks on multi-fidelity surrogates, Structural and Multidisciplinary Optimization, 55 (2017), 1029-1050.
doi: 10.1007/s00158-016-1550-y.![]() ![]() ![]() |
[167] |
C. Park, R. T. Haftka and N. H. Kim, Low-fidelity scale factor improves bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function, Structural and Multidisciplinary Optimization, 58 (2018), 399-414.
doi: 10.1007/s00158-018-2031-2.![]() ![]() |
[168] |
S. Pawar, O. San, P. Vedula, A. Rasheed and T. Kvamsdal, Multi-fidelity information fusion with concatenated neural networks, Scientific Reports, 12 (2022), 5900.
doi: 10.1038/s41598-022-09938-8.![]() ![]() |
[169] |
B. Peherstorfer, P. S. Beran and K. E. Willcox, Multifidelity Monte Carlo estimation for large-scale uncertainty propagation, in 2018 AIAA Non-Deterministic Approaches Conference, (2018), 1660.
doi: 10.2514/6.2018-1660.![]() ![]() |
[170] |
B. Peherstorfer, T. Cui, Y. Marzouk and K. Willcox, Multifidelity importance sampling, Computer Methods in Applied Mechanics and Engineering, 300 (2016), 490-509.
doi: 10.1016/j.cma.2015.12.002.![]() ![]() ![]() |
[171] |
B. Peherstorfer, K. Willcox and M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Review, 60 (2018), 550-591.
doi: 10.1137/16M1082469.![]() ![]() ![]() |
[172] |
P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence and G. Em Karniadakis, Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473 (2017), 20160751.
doi: 10.1098/rspa.2016.0751.![]() ![]() |
[173] |
P. Perdikaris, D. Venturi, J. Royset and G. Karniadakis, Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields, Proceedings of the Royal Society A, 471 (2015), 20150018.
doi: 10.1098/rspa.2015.0018.![]() ![]() |
[174] |
F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder and B. Bischl, Yahpo gym-an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization, in International Conference on Automated Machine Learning, PMLR, (2022).
![]() |
[175] |
P. Z. Qian and C. F. J. Wu, Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments, Technometrics, 50 (2008), 192-204.
doi: 10.1198/004017008000000082.![]() ![]() ![]() |
[176] |
P. Z. G. Qian, H. Wu and C. F. J. Wu, Gaussian process models for computer experiments with qualitative and quantitative factors, Technometrics, 50 (2008), 383-396.
doi: 10.1198/004017008000000262.![]() ![]() ![]() |
[177] |
N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan and P. K. Tucker, Surrogate-based analysis and optimization, Progress in Aerospace Sciences, 41 (2005), 1-28.
doi: 10.1016/j.paerosci.2005.02.001.![]() ![]() |
[178] |
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.![]() ![]() ![]() |
[179] |
M. Raissi and P. Seshaiyer, A multi-fidelity stochastic collocation method for parabolic partial differential equations with random input data, International Journal for Uncertainty Quantification, 4 (2014), 225-242.
doi: 10.1615/Int.J.UncertaintyQuantification.2014007778.![]() ![]() ![]() |
[180] |
D. Rajnarayan, A. Haas and I. Kroo, A multifidelity gradient-free optimization method and application to aerodynamic design, Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, Etats-Unis, (2008), 1-15.
doi: 10.2514/6.2008-6020.![]() ![]() |
[181] |
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for machine learning, volume 2. MIT, press Cambridge, MA, 2006.
![]() ![]() |
[182] |
J. E. Rayas-Sanchez, Power in simplicity with ASM: Tracing the aggressive space mapping algorithm over two decades of development and engineering applications, IEEE Microwave Magazine, 17 (2016), 64-76.
doi: 10.1109/MMM.2015.2514188.![]() ![]() |
[183] |
J. E. Rayas-Sánchez, F. Lara-Rojo and E. Martínez-Guerrero, A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits, IEEE Transactions on Microwave Theory and Techniques, 53 (2005), 960-968.
doi: 10.1109/TMTT.2004.842482.![]() ![]() |
[184] |
J. Ren, L. Leifsson, S. Koziel and Y. Tesfahunegn, Multi-fidelity aerodynamic shape optimization using manifold mapping, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2016), 0419.
doi: 10.2514/6.2016-0419.![]() ![]() |
[185] |
P. E. Réthoré, P. Fuglsang, G.C. Larsen, T. Buhl, T. J. Larsen and H. A. Madsen, TopFarm: Multi-fidelity optimization of offshore wind farm, in The Twenty-first International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 2011.
![]() |
[186] |
P. J. Roache, Verification and Validation in Computational Science and Engineering, volume 895. Hermosa Albuquerque, NM, 1998.
![]() |
[187] |
C. P. Robert and G. Casella, Monte Carlo Statistical Methods, , Springer, 2004.
doi: 10.1007/978-1-4757-4145-2.![]() ![]() ![]() |
[188] |
C. P. Robert, G. Casella and G. Casella, Monte Carlo Statistical Methods, volume 2. Springer, 1999.
doi: 10.1007/978-1-4757-3071-5.![]() ![]() ![]() |
[189] |
T. Robinson, M. Eldred, K. E. Willcox and R. Haimes, Strategies for multifidelity optimization with variable dimensional hierarchical models, in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2nd AIAA Multidisciplinary Design Optimization Specialist Conference), Newport, RI, (2006), 1819.
doi: 10.2514/6.2006-1819.![]() ![]() |
[190] |
T. Robinson, M. Eldred, K. E. Willcox and R. Haimes, Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping, AIAA Journal, 46 (2008), 2814-2822.
doi: 10.2514/1.36043.![]() ![]() |
[191] |
T. Robinson, K. E. Willcox, M. Eldred and R. Haimes, Multifidelity optimization for variable complexity design, in Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, 2006b.
doi: 10.2514/6.2006-7114.![]() ![]() |
[192] |
O. Roderick, M. Anitescu and Y. Peet, Proper orthogonal decompositions in multifidelity uncertainty quantification of complex simulation models, International Journal of Computer Mathematics, 91 (2014), 748-769.
doi: 10.1080/00207160.2013.844431.![]() ![]() |
[193] |
J. F. Rodriguez, V. M. Perez and J. E. Renaud, Sequential approximate optimization using variable fidelity response surface approximations, Structural and Multidisciplinary Optimization, 22 (2001), 24-34.
doi: 10.2514/6.2000-1391.![]() ![]() |
[194] |
W. Roux, N. Stander and R. T. Haftka, Response surface approximations for structural optimization, International Journal for Numerical Methods in Engineering, 42 (1998), 517-534.
doi: 10.2514/6.1996-4042.![]() ![]() |
[195] |
D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533-536.
doi: 10.7551/mitpress/1888.003.0013.![]() ![]() |
[196] |
J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn, Design and analysis of computer experiments, Statistical Science, 4 (1989), 409-435.
![]() ![]() |
[197] |
F. Sahli Costabal, P. Perdikaris, E. Kuhl and D. E. Hurtado, Multi-fidelity classification using Gaussian processes: Accelerating the prediction of large-scale computational models, Computer Methods in Applied Mechanics and Engineering, 357 (2019), 112602, 16 pp.
doi: 10.1016/j.cma.2019.112602.![]() ![]() ![]() |
[198] |
S. Sakamoto and R. Ghanem, Polynomial chaos decomposition for the simulation of non-Gaussian nonstationary stochastic processes, Journal of Engineering Mechanics, 128 (2002), 190-201.
doi: 10.1061/(ASCE)0733-9399(2002)128:2(190).![]() ![]() |
[199] |
A. Sharma, C. Gogu, O. A. Martinez, B. V. Sankar and R. T. Haftka, Multi-fidelity design of an integrated thermal protection system for spacecraft reentry, in 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schauroburg, Illinois, USA, 2008.
doi: 10.2514/6.2008-2062.![]() ![]() |
[200] |
A. Sharma, B. Sankar and R. T. Haftka, Multi-fidelity analysis of corrugated-core sandwich panels for integrated thermal protection systems, in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-7 May, Palm Springs, California, 2009.
doi: 10.2514/6.2009-2201.![]() ![]() |
[201] |
T. W. Simpson, J. Poplinski, P. N. Koch and J. K. Allen, Metamodels for computer-based engineering design: Survey and recommendations, Engineering with Computers, 17 (2001), 129-150.
doi: 10.1007/PL00007198.![]() ![]() |
[202] |
G. Singh and R. Grandhi, Mixed-variable optimization strategy employing multifidelity simulation and surrogate models, AIAA Journal, 48 (2010), 215-223.
doi: 10.2514/1.43469.![]() ![]() |
[203] |
G. Sun, G. Li, M. Stone and Q. Li, A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials, Computational Materials Science, 49 (2010), 500-511.
doi: 10.1016/j.commatsci.2010.05.041.![]() ![]() |
[204] |
G. Sun, G. Li, W. Zhou, S. Xu, X. Yang and Q. Li, Multi-fidelity optimization for sheet metal forming process, Structural and Multidisciplinary Optimization, 44 (2011), 111-124.
![]() |
[205] |
S. Surjanovic and D. Bingham, Virtual library of simulation experiments: Test functions and datasets, retrieved october 13, 2020, 2013.
![]() |
[206] |
N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. Todd Hurst, C. B. Kendall, M. B. Gotway and J. Liang, Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Transactions on Medical Imaging, 35 (2016), 1299-1312.
doi: 10.1109/TMI.2016.2535302.![]() ![]() |
[207] |
J. Tao and G. Sun, Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization, Aerospace Science and Technology, 92 (2019), 722-737.
doi: 10.1016/j.ast.2019.07.002.![]() ![]() |
[208] |
M. J. Thoresson, Efficient Gradient-Based Optimisation of Suspension Characteristics for an Off-Road Vehicle, PhD thesis, University of Pretoria, 2007.
![]() |
[209] |
D. J. Toal, On the potential of a multi-fidelity G-POD based approach for optimization and uncertainty quantification, in ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2014.
doi: 10.1115/GT2014-25184.![]() ![]() |
[210] |
D. J. Toal, Some considerations regarding the use of multi-fidelity kriging in the construction of surrogate models, Structural and Multidisciplinary Optimization, 51 (2015), 1223-1245.
doi: 10.1007/s00158-014-1209-5.![]() ![]() |
[211] |
D. J. Toal and A. J. Keane, Efficient multipoint aerodynamic design optimization via cokriging, Journal of Aircraft, 48 (2011), 1685-1695.
doi: 10.2514/1.C031342.![]() ![]() |
[212] |
D. J. Toal, A. J. Keane, D. Benito, J. A. Dixon, J. Yang, M. Price, T. Robinson, A. Remouchamps and N. Kill, Multifidelity multidisciplinary whole-engine thermomechanical design optimization, Journal of Propulsion and Power, 30 (2014), 1654-1666.
doi: 10.2514/1.B35128.![]() ![]() |
[213] |
V. Toropov, F. Keulen, V. Markine and L. Alvarez, Multipoint approximations based on response surface fitting: A summary of recent developments, in Proceedings of the 1st ASMO UK/ISSMO Conference on Engineering Design Optimization, Ilkley, West Yorkshire, UK, (1999), 371-381.
![]() |
[214] |
V. Toropov and V. Markine, Use of simplified numerical models as approximations: Application to a dynamic optimal design problem, Proceedings of the First ISSMO/NASA Internet Conference on Approximation and Fast Reanalysis Techniques in Engineering Optimization, (1998), page 1.
![]() |
[215] |
M. G. Turner, J. A. Reed, R. Ryder and J. P. Veres, Multi-fidelity simulation of a turbofan engine with results zoomed into mini-maps for a zero-d cycle simulation, in ASME Turbo Expo 2004: Power for Land, Sea, and Air, American Society of Mechanical Engineers, (2004), 219-230.
doi: 10.1115/GT2004-53956.![]() ![]() |
[216] |
J. Umakant, K. Sudhakar, P. P. Mujumdar and C. R. Rao, Ranking based uncertainty quantification for a multifidelity design approach, Journal of Aircraft, 44 (2007), 410-419.
doi: 10.2514/1.22424.![]() ![]() |
[217] |
S. van Rijn and S. Schmitt, Mf2: A collection of multi-fidelity benchmark functions in python, Journal of Open Source Software, 5 (2020), 2049.
![]() |
[218] |
A. Variyar, T. Economon and J. Alonso, Multifidelity conceptual design and optimization of strut-braced wing aircraft using physics based methods, in 54th AIAA Aerospace Sciences Meeting, (2016), 2000.
doi: 10.2514/6.2016-2000.![]() ![]() |
[219] |
S. Venkataraman, Reliability optimization using probabilistic sufficiency factor and correction response surface, Engineering Optimization, 38 (2006), 671-685.
doi: 10.2514/6.2004-2033.![]() ![]() |
[220] |
S. Venkataraman, R. T. Haftka and T. Johnson, Design of shell structures for buckling using correction response surface approximations, in 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, (1998), 4855.
doi: 10.2514/6.1998-4855.![]() ![]() |
[221] |
F. A. Viana, T. W. Simpson, V. Balabanov and V. Toropov, Special section on multidisciplinary design optimization: Metamodeling in multidisciplinary design optimization: How far have we really come?, AIAA Journal, 52 (2014), 670-690.
doi: 10.2514/1.J052375.![]() ![]() |
[222] |
F. A. Viana, V. Steffen Jr., S. Butkewitsch and M. de Freitas Leal, Optimization of aircraft structural components by using nature-inspired algorithms and multi-fidelity approximations, Journal of Global Optimization, 45 (2009), 427-449.
doi: 10.1007/s10898-008-9383-x.![]() ![]() ![]() |
[223] |
R. Vitali, R. T. Haftka and B. V. Sankar, Correction response surface approximations for stress intensity factors of a composite stiffened plate, in Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structural Dynamics, and Materials Conference. Long Beach, CA, AIAA-98-2047, (1998), 2917-2922.
doi: 10.2514/6.1998-2047.![]() ![]() |
[224] |
R. Vitali, R. T. Haftka and B. V. Sankar, Multi-fidelity design of stiffened composite panel with a crack, Structural and Multidisciplinary Optimization, 23 (2002), 347-356.
doi: 10.1007/s00158-002-0195-1.![]() ![]() |
[225] |
R. Vitali, O. Park, R. T. Haftka and B. V. Sankar, Structural optimization of a hat stiffened panel by response surface techniques, AIAA Paper, (1997), 1151.
doi: 10.2514/6.1997-1151.![]() ![]() |
[226] |
R. Vitali, O. Park, R. T. Haftka, B. V. Sankar and C. A. Rose, Structural optimization of a hat-stiffened panel using response surfaces, Journal of Aircraft, 39 (2002), 158-166.
doi: 10.2514/2.2910.![]() ![]() |
[227] |
R. Vitali and B. V. Sankar, Correction response surface design of stiffened composite panel with a crack, in Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA-99, (1999), 1313.
doi: 10.2514/6.1999-1313.![]() ![]() |
[228] |
J. Wackers, R. Pellegrini, A. Serani, M. Visonneau and M. Diez, Efficient initialization for multi-fidelity surrogate-based optimization, Journal of Ocean Engineering and Marine Energy, 9 (2023), 291-307.
doi: 10.1007/s40722-022-00268-5.![]() ![]() |
[229] |
P. Wang, Y. Zheng, Z. Zou, L. Qi and Z. Zhou, A novel multi-fidelity coupled simulation method for flow systems, Chinese Journal of Aeronautics, 26 (2013), 868-875.
doi: 10.1016/j.cja.2013.04.022.![]() ![]() |
[230] |
D. J. Willis, P.-O. Persson, E. R. Israeli, J. Peraire, S. M. Swartz and K. S. Breuer, Multifidelity approaches for the computational analysis and design of effective flapping wing vehicles, AIAA Paper, 2008 (2008), 518.
doi: 10.2514/6.2008-518.![]() ![]() |
[231] |
D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, 24 (2002), 619-644.
doi: 10.1137/S1064827501387826.![]() ![]() ![]() |
[232] |
D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, Journal of Computational Physics, 187 (2003), 137-167.
doi: 10.1016/S0021-9991(03)00092-5.![]() ![]() ![]() |
[233] |
W. Yamazaki, M. Rumpfkeil and D. Mavriplis, Design optimization utilizing gradient/hessian enhanced surrogate model, in 28th AIAA Applied Aerodynamics Conference, (2010), 4363.
doi: 10.2514/6.2010-4363.![]() ![]() |
[234] |
M. Y. Yoo and J. H. Choi, Probabilistic calibration of computer model and application to reliability analysis of elasto-plastic insertion problem, Transactions of the Korean Society of Mechanical Engineers A, 37 (2013), 1133-1140.
doi: 10.3795/KSME-A.2013.37.9.1133.![]() ![]() |
[235] |
K. Yu, X. Yang and Z. Mo, Profile design and multifidelity optimization of solid rocket motor nozzle, Journal of Fluids Engineering, 136 (2014), 031104.
doi: 10.1115/1.4026248.![]() ![]() |
[236] |
P. M. Zadeh and V. Toropov, Multi-fidelity multidisciplinary design optimization based on collaborative optimization framework, in AIAA 2002-5504, Proc. 9th AIAA/ISSMO Symposium Multidisciplinary Analysis & Optimization, 2002.
doi: 10.2514/6.2002-5504.![]() ![]() |
[237] |
P. M. Zadeh, V. Toropov and A. S. Wood, Use of moving least squares method in collaborative optimization, in 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro Brazil, 2005.
![]() |
[238] |
M. K. Zahir and Z. Gao, Variable-fidelity optimization with design space reduction, Chinese Journal of Aeronautics, 26 (2013), 841-849.
doi: 10.1016/j.cja.2013.06.002.![]() ![]() |
[239] |
L. Zhang, J. Xu, M. C. Yagoub, R. Ding and Q. J. Zhang, Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling, IEEE Transactions on Microwave Theory and Techniques, 53 (2005), 2752-2767.
![]() |
[240] |
L. Zhang, Q.-J. Zhang and J. Wood, Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices, IEEE Transactions on Microwave Theory and Techniques, 56 (2008), 2453-2467.
doi: 10.1109/TMTT.2008.2004894.![]() ![]() |
[241] |
X. Zhang, F. Xie, T. Ji, Z. Zhu and Y. Zheng, Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization, Computer Methods in Applied Mechanics and Engineering, 373 (2021), 113485, 25 pp.
doi: 10.1016/j.cma.2020.113485.![]() ![]() ![]() |
[242] |
Y. Zhang, N. H. Kim, C. Park and R. T. Haftka, Multifidelity surrogate based on single linear regression, AIAA Journal, 56 (2018), 4944-4952.
doi: 10.2514/1.J057299.![]() ![]() |
[243] |
J. Zheng, X. Shao, L. Gao, P. Jiang and Z. Li, A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction, Journal of Engineering Design, 24 (2013), 604-622.
doi: 10.1080/09544828.2013.788135.![]() ![]() |
[244] |
J. Zheng, X. Shao, L. Gao, P. Jiang and H. Qiu, Difference mapping method using least square support vector regression for variable-fidelity metamodelling, Engineering Optimization, 47 (2015), 719-736.
doi: 10.1080/0305215X.2014.918114.![]() ![]() |
[245] |
L. Zheng, T. L. Hedrick and R. Mittal, A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight, Journal of Fluid Mechanics, 721 (2013), 118-154.
doi: 10.1017/jfm.2013.46.![]() ![]() |
[246] |
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and Q. He, A comprehensive survey on transfer learning, Proceedings of the IEEE, 109 (2021), 43-76.
doi: 10.1109/JPROC.2020.3004555.![]() ![]() |
[247] |
L. Zimmer, M. Lindauer and F. Hutter, Auto-pytorch: Multi-fidelity metalearning for efficient and robust autoDL, IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (2021), 3079-3090.
doi: 10.1109/TPAMI.2021.3067763.![]() ![]() |
[248] |
Z. Zou, J. Liu, W. Zhang and P. Wang, Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines, Energy, 103 (2016), 410-429.
doi: 10.1016/j.energy.2016.02.070.![]() ![]() |
Connection between high-fidelity and low-fidelity models is commonly attributed to one or more of the following factors: dimensionality reduction, grid coarsening, linearization, partial convergence, reduced geometry complexity, and simplified physics
Within the frame of multi-fidelity modeling, surrogate models are commonly used to integrate information from different fidelities. When constructing a surrogate model that combines fidelities explicitly, such as co-Kriging, the resulting approach is referred to as a multi-fidelity surrogate model. In contrast, multi-fidelity hierarchical models combine fidelities without requiring to build an explicit multi-fidelity surrogate model architecture. Methods such as importance sampling fall under the multi-fidelity hierarchical category
Proportions of different attributes found in the reviewed multi-fidelity literature [78]
Main differences between fidelities found in the literature
Prevalence of multi-fidelity surrogate models over multi-fidelity hierarchical models in surveyed literature up to 2016. Recent trends suggest a growing shift towards hierarchical models due to advancements in computing and algorithms
Multi-fidelity surrogate models' parameters are inferred utilizing either deterministic or non-deterministic methodologies contingent upon the underlying presumptions of the unknown parameters
Proportion of deterministic and non-deterministic methods utilized for constructing multi-fidelity surrogate models based on the literature. The chart also displays the distribution of the combination methods introduced in Section 4.2 within each category, deterministic and non-deterministic methods
Frequency of publication over time for deterministic and non-deterministic methods
The cost ratio for a single analysis using a low-fidelity model compared to a high-fidelity model (known as the LFA/HFA cost ratio) is measured against the cost ratio for completing an optimization process with a multi-fidelity surrogate model versus a high-fidelity model (termed the MFO/HFO cost ratio). The dashed line in the graph serves as a threshold; points below this line suggest that using multi-fidelity models does not result in speed-ups
Examples of sampling strategies
Example of a nested sampling design, where the teal-colored bubbles represent LFM points, and the pink-colored bubbles represent HFM points selected using the D-optimal design criterion
Nearest neighbor sampling. High-fidelity model points (teal bubbles) and low-fidelity model points (pink bubbles) are sampled independently, and then the low-fidelity model nearest neighbor point to each high-fidelity model point is moved on top of it (black bubbles)
One-dimensional analytic example illustrating the performance of additive and multiplicative correction approach
One-dimensional analytic example illustrating the concept of comprehensive correction [242]
Effect of the LFM constants A, B, C on co-Kriging performance. The variables were modified one at a time, setting the ones not being considered to their default value
One-dimensional analytic example illustrating the concept of comprehensive correction [242]
One-dimensional co-Kriging example. [242]
Co-Kriging sensitivity to initial sampling points
Predictive landscape of the Forrester function. Gray regions delineate areas falling within one standard deviation
Comparative performance of Branin function predictions employing both additive and multiplicative corrections. The associated MAPE is an evaluative metric, signaling comparable efficacy between the approaches