February  2007, 1(1): 1-11. doi: 10.3934/amc.2007.1.1

Cryptanalysis of the CFVZ cryptosystem

1. 

Institut Universitari d'Investigació Informàtica, Departament de Ciència de la Computació i Intel$\cdot$ligència Artificial, Universitat d'Alacant, Ap. correus 99, E-03080 Alacant, Spain

2. 

Department of Mathematics, University of Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland

3. 

Institut für Mathematik, Universität Zürich, Zürich, CH-8057, Switzerland

Received  February 2006 Revised  October 2006 Published  January 2007

The paper analyzes CFVZ, a new public key cryptosystem whose security is based on a matrix version of the discrete logarithm problem over an elliptic curve. It is shown that the complexity of solving the underlying problem for the proposed system is dominated by the complexity of solving a fixed number of discrete logarithm problems in the group of an elliptic curve. Using an adapted Pollard rho algorithm it is shown that this problem is essentially as hard as solving one discrete logarithm problem in the group of an elliptic curve. Hence, the CFVZ cryptosystem has no advantages over traditional elliptic curve cryptography and should not be used in practice.
Citation: Joan-Josep Climent, Elisa Gorla, Joachim Rosenthal. Cryptanalysis of the CFVZ cryptosystem. Advances in Mathematics of Communications, 2007, 1 (1) : 1-11. doi: 10.3934/amc.2007.1.1
[1]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[2]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[3]

Javier de la Cruz, Ricardo Villanueva-Polanco. Public key cryptography based on twisted dihedral group algebras. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022031

[4]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

[5]

Alar Leibak. On the number of factorizations of $ t $ mod $ N $ and the probability distribution of Diffie-Hellman secret keys for many users. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021029

[6]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[7]

Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247

[8]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[9]

Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249

[10]

Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012

[11]

Anna-Lena Horlemann-Trautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2021, 15 (4) : 677-699. doi: 10.3934/amc.2020089

[12]

Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells. Ironwood meta key agreement and authentication protocol. Advances in Mathematics of Communications, 2021, 15 (3) : 397-413. doi: 10.3934/amc.2020073

[13]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[14]

Lidong Chen, Dustin Moody. New mission and opportunity for mathematics researchers: Cryptography in the quantum era. Advances in Mathematics of Communications, 2020, 14 (1) : 161-169. doi: 10.3934/amc.2020013

[15]

Mohammad Sadeq Dousti, Rasool Jalili. FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Advances in Mathematics of Communications, 2015, 9 (4) : 471-514. doi: 10.3934/amc.2015.9.471

[16]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[17]

Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021053

[18]

Ramprasad Sarkar, Mriganka Mandal, Sourav Mukhopadhyay. Quantum-safe identity-based broadcast encryption with provable security from multivariate cryptography. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022026

[19]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[20]

Xinwei Gao. Comparison analysis of Ding's RLWE-based key exchange protocol and NewHope variants. Advances in Mathematics of Communications, 2019, 13 (2) : 221-233. doi: 10.3934/amc.2019015

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (154)
  • HTML views (0)
  • Cited by (1)

[Back to Top]