 Previous Article
 AMC Home
 This Issue

Next Article
Codes in spherical caps
The ubiquity of order domains for the construction of error control codes
1.  Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, United States 
[1] 
JeanLuc Chabert, AiHua Fan, Youssef Fares. Minimal dynamical systems on a discrete valuation domain. Discrete & Continuous Dynamical Systems  A, 2009, 25 (3) : 777795. doi: 10.3934/dcds.2009.25.777 
[2] 
Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 18891902. doi: 10.3934/dcdsb.2012.17.1889 
[3] 
Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 8395. doi: 10.3934/amc.2009.3.83 
[4] 
José GómezTorrecillas, F. J. Lobillo, Gabriel Navarro. Informationbit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149168. doi: 10.3934/amc.2015.9.149 
[5] 
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399412. doi: 10.3934/amc.2007.1.399 
[6] 
Hancheng Guo, Jie Xiong. A secondorder stochastic maximum principle for generalized meanfield singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451473. doi: 10.3934/mcrf.2018018 
[7] 
Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems  A, 2018, 38 (1) : 169186. doi: 10.3934/dcds.2018008 
[8] 
G. Caginalp, Emre Esenturk. Anisotropic phase field equations of arbitrary order. Discrete & Continuous Dynamical Systems  S, 2011, 4 (2) : 311350. doi: 10.3934/dcdss.2011.4.311 
[9] 
Liping Zhang, SoonYi Wu, ShuCherng Fang. Convergence and error bound of a Dgap function based Newtontype algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333346. doi: 10.3934/jimo.2010.6.333 
[10] 
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143164. doi: 10.3934/jcd.2015001 
[11] 
Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control & Related Fields, 2018, 8 (1) : 195215. doi: 10.3934/mcrf.2018009 
[12] 
Patrick Henning, Mario Ohlberger. Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete & Continuous Dynamical Systems  S, 2015, 8 (1) : 119150. doi: 10.3934/dcdss.2015.8.119 
[13] 
Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Smooth control of nanowires by means of a magnetic field. Communications on Pure & Applied Analysis, 2009, 8 (3) : 871879. doi: 10.3934/cpaa.2009.8.871 
[14] 
Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Meanfield control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699715. doi: 10.3934/nhm.2015.10.699 
[15] 
Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a CahnHilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems  S, 2017, 10 (1) : 3754. doi: 10.3934/dcdss.2017002 
[16] 
Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177189. doi: 10.3934/mcrf.2015.5.177 
[17] 
George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higherorder Boussinesq system on a periodic domain. Communications on Pure & Applied Analysis, 2020, 19 (2) : 747769. doi: 10.3934/cpaa.2020035 
[18] 
Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems  A, 2002, 8 (4) : 9951018. doi: 10.3934/dcds.2002.8.995 
[19] 
Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 42934322. doi: 10.3934/dcds.2015.35.4293 
[20] 
Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems  B, 2009, 11 (2) : 283314. doi: 10.3934/dcdsb.2009.11.283 
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]