 Previous Article
 AMC Home
 This Issue

Next Article
An extremal singly even selfdual code of length 88
Unconditionally secure chaffing and winnowing with short authentication tags
1.  David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada 
In this paper, we construct unconditionally secure chaffingandwinnowing schemes from unconditionally secure authentication codes in which the authentication tags are very short. This could be a desirable feature, because certain types of unconditionally secure authentication codes can provide perfect secrecy if the length of an authentication tag is at least as long as the length of the plaintext. The use of such a code might be prohibited if encryption schemes are made illegal, so it is of interest to construct chaffingandwinnowing schemes based on ''short'' authentication tags.
[1] 
Angsuman Das, Avishek Adhikari, Kouichi Sakurai. Plaintext checkable encryption with designated checker. Advances in Mathematics of Communications, 2015, 9 (1) : 3753. doi: 10.3934/amc.2015.9.37 
[2] 
Laura Luzzi, Ghaya RekayaBen Othman, JeanClaude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 126. doi: 10.3934/amc.2012.6.1 
[3] 
Irene MárquezCorbella, Edgar MartínezMoro, Emilio SuárezCanedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229254. doi: 10.3934/amc.2016003 
[4] 
Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 4552. doi: 10.3934/amc.2016.10.45 
[5] 
Claude Carlet, Juan Carlos KuCauich, Horacio TapiaRecillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249258. doi: 10.3934/amc.2012.6.249 
[6] 
Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 116. doi: 10.3934/amc.2018001 
[7] 
Jie Xu, Lanjun Dang. An efficient RFID anonymous batch authentication protocol based on group signature. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 14891500. doi: 10.3934/dcdss.2019102 
[8] 
Fei Gao. Data encryption algorithm for ecommerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 14571470. doi: 10.3934/dcdss.2019100 
[9] 
Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 13271340. doi: 10.3934/dcdss.2019091 
[10] 
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399412. doi: 10.3934/amc.2007.1.399 
[11] 
Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 18891902. doi: 10.3934/dcdsb.2012.17.1889 
[12] 
Yeow Meng Chee, Xiande Zhang, Hui Zhang. Infinite families of optimal splitting authentication codes secure against spoofing attacks of higher order. Advances in Mathematics of Communications, 2011, 5 (1) : 5968. doi: 10.3934/amc.2011.5.59 
[13] 
Yang Lu, Jiguo Li. Forwardsecure identitybased encryption with direct chosenciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161177. doi: 10.3934/amc.2017010 
[14] 
M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407424. doi: 10.3934/naco.2013.3.407 
[15] 
Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 8395. doi: 10.3934/amc.2009.3.83 
[16] 
Masaaki Harada, Takuji Nishimura. An extremal singly even selfdual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261267. doi: 10.3934/amc.2007.1.261 
[17] 
José GómezTorrecillas, F. J. Lobillo, Gabriel Navarro. Informationbit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149168. doi: 10.3934/amc.2015.9.149 
[18] 
M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281296. doi: 10.3934/amc.2014.8.281 
[19] 
Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$_{4}linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275286. doi: 10.3934/amc.2011.5.275 
[20] 
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doublyeven selfdual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583588. doi: 10.3934/amc.2016027 
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]