August  2007, 1(3): 321-330. doi: 10.3934/amc.2007.1.321

Parity properties of Costas arrays defined via finite fields

1. 

School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland, Ireland

2. 

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

Received  December 2006 Revised  June 2007 Published  July 2007

A Costas array of order $n$ is an arrangement of dots and blanks into $n$ rows and $n$ columns, with exactly one dot in each row and each column, the arrangement satisfying certain specified conditions. A dot occurring in such an array is even/even if it occurs in the $i$-th row and $j$-th column, where $i$ and $j$ are both even integers, and there are similar definitions of odd/odd, even/odd and odd/even dots. Two types of Costas arrays, known as Golomb-Costas and Welch-Costas arrays, can be defined using finite fields. When $q$ is a power of an odd prime, we enumerate the number of even/even odd/odd, even/odd and odd/even dots in a Golomb-Costas array. We show that three of these numbers are equal and they differ by $\pm 1$ from the fourth. For a Welch-Costas array of order $p-1$, where $p$ is an odd prime, the four numbers above are all equal to $(p-1)/4$ when $p\equiv 1(\mod 4)$, but when $p\equiv 3(\mod 4)$, we show that the four numbers are defined in terms of the class number of the imaginary quadratic field $\mathbb Q(\sqrt{-p})$, and thus behave in a much less predictable manner.
Citation: Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321
[1]

Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241

[2]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[3]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547

[4]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69

[5]

Konstantinos Drakakis. A review of the available construction methods for Golomb rulers. Advances in Mathematics of Communications, 2009, 3 (3) : 235-250. doi: 10.3934/amc.2009.3.235

[6]

Xiaolu Hou, Frédérique Oggier. Modular lattices from a variation of construction a over number fields. Advances in Mathematics of Communications, 2017, 11 (4) : 719-745. doi: 10.3934/amc.2017053

[7]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[8]

Drew Fudenberg, David K. Levine. Tail probabilities for triangular arrays. Journal of Dynamics & Games, 2014, 1 (1) : 45-56. doi: 10.3934/jdg.2014.1.45

[9]

María Isabel Cortez. $Z^d$ Toeplitz arrays. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 859-881. doi: 10.3934/dcds.2006.15.859

[10]

Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347

[11]

Nian Li, Qiaoyu Hu. A conjecture on permutation trinomials over finite fields of characteristic two. Advances in Mathematics of Communications, 2019, 13 (3) : 505-512. doi: 10.3934/amc.2019031

[12]

Domingo Gomez-Perez, Ana-Isabel Gomez, Andrew Tirkel. Arrays composed from the extended rational cycle. Advances in Mathematics of Communications, 2017, 11 (2) : 313-327. doi: 10.3934/amc.2017024

[13]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[14]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[15]

Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407

[16]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[17]

Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113

[18]

Kai-Uwe Schmidt. The merit factor of binary arrays derived from the quadratic character. Advances in Mathematics of Communications, 2011, 5 (4) : 589-607. doi: 10.3934/amc.2011.5.589

[19]

F. H. Clarke, Yu. S . Ledyaev, R. J. Stern. Proximal techniques of feedback construction. Conference Publications, 1998, 1998 (Special) : 177-194. doi: 10.3934/proc.1998.1998.177

[20]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]