We present a general theory for decomposing additive self-dual
codes over $\mathbbF_4$ that have an automorphism of odd prime order. We apply the decomposition to codes of length $n$ with $13\leq n\leq30$ and automorphisms of prime order $r$ with $5\leq r\leq23$. Using this decomposition we classify all extremal/optimal additive self-dual codes with certain parameters in this list. In the process, we find the first $(18$, 218, $7)$, $(24$, 224, $8)$, and $(28$, 228, $10)$ Type I codes. We also improve the lower bounds on the number of known extremal/optimal additive self-dual codes for some values of $n$ with $13\leq n\leq 30$.