May  2008, 2(2): 113-130. doi: 10.3934/amc.2008.2.113

On the generalization of the Costas property in the continuum


School of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland


School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4

Received  June 2007 Revised  January 2008 Published  April 2008

We extend the definition of the Costas property to functions in the continuum, namely on intervals of the reals or the rationals, and argue that such functions can be used in the same applications as discrete Costas arrays. We construct Costas bijections in the real continuum within the class of piecewise continuously differentiable functions, but our attempts to construct a fractal-like Costas bijection there are successful only under slight but necessary deviations from the usual arithmetic laws. The situation over the rationals is different: there, we propose a method of great generality and flexibility for the construction of a Costas fractal bijection. Its success, though, relies heavily on the enumerability of the rationals, and therefore it cannot be generalized over the reals in an obvious way.
Citation: Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158


Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217


Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

2019 Impact Factor: 0.734


  • PDF downloads (47)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]