November  2008, 2(4): 403-420. doi: 10.3934/amc.2008.2.403

Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity

1. 

Institut TELECOM, TELECOM ParisTech, 46, rue Barrault, 75634 Paris Cedex 13, France

2. 

Institut TELECOM - TELECOM ParisTech, & Centre National de la Recherche Scientifique - LTCI UMR 5141, 46, rue Barrault, 75634 Paris Cedex 13, France, France, France, France

Received  May 2008 Revised  October 2008 Published  November 2008

Consider an undirected bipartite graph $G=(V=I\cup A,E)$, with no edge inside $I$ nor $A$. For any vertex $v\in V$, let $N(v)$ be the set of neighbours of $v$. A code $C \subseteq A$ is said to be discriminating if all the sets $N(i) \cap C$, $i \in I$, are nonempty and distinct. We study some properties of discriminating codes. In particular, we give bounds on the minimum size of these codes, investigate graphs where minimal discriminating codes have size close to the upper bound, or give the exact minimum size in particular graphs; we also give an NP-completeness result.
Citation: Emmanuel Charbit, Irène Charon, Gérard Cohen, Olivier Hudry, Antoine Lobstein. Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Advances in Mathematics of Communications, 2008, 2 (4) : 403-420. doi: 10.3934/amc.2008.2.403
[1]

Mikko Pelto. On $(r,\leq 2)$-locating-dominating codes in the infinite king grid. Advances in Mathematics of Communications, 2012, 6 (1) : 27-38. doi: 10.3934/amc.2012.6.27

[2]

Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129

[3]

Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131

[4]

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35

[5]

Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163

[6]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[7]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[8]

Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93

[9]

Christine A. Kelley, Deepak Sridhara, Joachim Rosenthal. Zig-zag and replacement product graphs and LDPC codes. Advances in Mathematics of Communications, 2008, 2 (4) : 347-372. doi: 10.3934/amc.2008.2.347

[10]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[11]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Binary codes from reflexive uniform subset graphs on $3$-sets. Advances in Mathematics of Communications, 2015, 9 (2) : 211-232. doi: 10.3934/amc.2015.9.211

[12]

Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021

[13]

M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13

[14]

Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001

[15]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[16]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

[17]

Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223

[18]

JiYoon Jung, Carl Mummert, Elizabeth Niese, Michael Schroeder. On erasure combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (1) : 49-65. doi: 10.3934/amc.2018003

[19]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[20]

Carlos Munuera, Alonso Sepúlveda, Fernando Torres. Castle curves and codes. Advances in Mathematics of Communications, 2009, 3 (4) : 399-408. doi: 10.3934/amc.2009.3.399

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (8)

[Back to Top]