-
Previous Article
Geometric constructions of optimal optical orthogonal codes
- AMC Home
- This Issue
-
Next Article
On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables
Weight distribution and decoding of codes on hypergraphs
1. | Dept. of ECE and Institute for Systems Research, University of Maryland, College Park, MD 20742 |
2. | Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, United States |
3. | Institut de Mathématiques de Bordeaux, Université de Bordeaux 1, 351 cours de la Libération, 33405 Talence, France |
In this paper we study two aspects of hypergraph codes. First, we compute the weight enumerators of several ensembles of such codes, establishing conditions under which they attain the Gilbert-Varshamov bound and deriving estimates of their distance. In particular, we show that this bound is attained by codes constructed on a fixed bipartite graph with a large spectral gap.
We also suggest a new decoding algorithm of hypergraph codes that corrects a constant fraction of errors, improving upon the algorithm of Bilu and Hoory.
[1] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[2] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021042 |
[3] |
Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 |
[4] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[5] |
Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059 |
[6] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[7] |
Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007 |
[8] |
Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443 |
[9] |
Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505 |
[10] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[11] |
Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 |
[12] |
Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131 |
[13] |
Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385 |
[14] |
Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83 |
[15] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[16] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[17] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
[18] |
Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046 |
[19] |
Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 |
[20] |
Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]