
Previous Article
Sperner capacity of small digraphs
 AMC Home
 This Issue
 Next Article
New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set
1.  Department of Electrical & Computer Engineering, University California San Diego, San Diego, CA. 92117, United States 
2.  Samsung Electronics co. Ltd., Yongin, South Korea 
3.  School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440746, South Korea 
[1] 
Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 19. doi: 10.3934/amc.2020001 
[2] 
Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal lowhitzone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 6779. doi: 10.3934/amc.2018004 
[3] 
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199210. doi: 10.3934/amc.2015.9.199 
[4] 
WeiWen Hu. Integervalued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445452. doi: 10.3934/amc.2017037 
[5] 
Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Zcomplementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237247. doi: 10.3934/amc.2012.6.237 
[6] 
Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with intergroup orthogonal and intersubgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 921. doi: 10.3934/amc.2015.9.9 
[7] 
Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2020, 14 (4) : 579589. doi: 10.3934/amc.2020031 
[8] 
Wenjuan Yin, Can Xiang, FangWei Fu. Two constructions of lowhitzone frequencyhopping sequence sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020110 
[9] 
Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020087 
[10] 
Lenny Fukshansky, Ahmad A. Shaar. A new family of onecoincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181188. doi: 10.3934/amc.2018012 
[11] 
Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequencyhopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 5562. doi: 10.3934/amc.2015.9.55 
[12] 
Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293310. doi: 10.3934/amc.2013.7.293 
[13] 
Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671691. doi: 10.3934/amc.2017049 
[14] 
Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359373. doi: 10.3934/amc.2014.8.359 
[15] 
JiWoong Jang, YoungSik Kim, SangHyo Kim, DaeWoon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 6168. doi: 10.3934/amc.2010.4.61 
[16] 
Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with intersubset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541552. doi: 10.3934/amc.2018032 
[17] 
Büşra Özden, Oǧuz Yayla. Partial direct product difference sets and almost quaternary sequences. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021010 
[18] 
Hua Liang, Jinquan Luo, Yuansheng Tang. On crosscorrelation of a binary $m$sequence of period $2^{2k}1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693703. doi: 10.3934/amc.2017050 
[19] 
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero oddperiodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 2333. doi: 10.3934/amc.2020040 
[20] 
Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 50855103. doi: 10.3934/dcds.2018223 
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]