February  2009, 3(1): 83-95. doi: 10.3934/amc.2009.3.83

The two covering radius of the two error correcting BCH code


University of Kentucky, 779A F. Paul Anderson Tower, Lexington, KY 40506-0046


Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099, United States

Received  October 2008 Revised  January 2009 Published  January 2009

The $m$-covering radii of codes are natural generalizations of the covering radii of codes. In this paper we analyze the 2-covering radii of double error correcting BCH code. In particular, we show that the 2-covering radius of the double error correcting BCH code is $(n+1)/2$ for sufficiently large $n$.
Citation: Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451


Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458


Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051


Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 0.734


  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]