- Previous Article
- AMC Home
- This Issue
-
Next Article
Efficient reduction of large divisors on hyperelliptic curves
Relations between arithmetic geometry and public key cryptography
1. | Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29, 45326 Essen, Germany |
But, of course, the main part of the article deals with the usual realization by discrete logarithms in groups, and the main source for cryptographically useful groups are divisor class groups.
We describe advances concerning arithmetic in such groups attached to curves over finite fields including addition and point counting which have an immediate application to the construction of cryptosystems.
For the security of these systems one has to make sure that the computation of the discrete logarithm is hard. We shall see how methods from arithmetic geometry narrow the range of candidates usable for cryptography considerably and leave only carefully chosen curves of genus $1$ and $2$ without flaw.
A last section gives a short report on background and realization of bilinear structures on divisor class groups induced by duality theory of class field theory, the key concept here is the Lichtenbaum-Tate pairing.
[1] |
Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215 |
[2] |
Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023 |
[3] |
Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489 |
[4] |
Josep M. Olm, Xavier Ros-Oton. Approximate tracking of periodic references in a class of bilinear systems via stable inversion. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 197-215. doi: 10.3934/dcdsb.2011.15.197 |
[5] |
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 |
[6] |
Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046 |
[7] |
Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021053 |
[8] |
Javier de la Cruz, Ricardo Villanueva-Polanco. Public key cryptography based on twisted dihedral group algebras. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022031 |
[9] |
Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305 |
[10] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[11] |
Marcy Barge. Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1159-1173. doi: 10.3934/dcds.2016.36.1159 |
[12] |
El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221 |
[13] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434 |
[14] |
John B. Baena, Daniel Cabarcas, Javier Verbel. On the complexity of solving generic overdetermined bilinear systems. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021047 |
[15] |
Steven D. Galbraith, Ping Wang, Fangguo Zhang. Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm. Advances in Mathematics of Communications, 2017, 11 (3) : 453-469. doi: 10.3934/amc.2017038 |
[16] |
Gora Adj, Isaac Canales-Martínez, Nareli Cruz-Cortés, Alfred Menezes, Thomaz Oliveira, Luis Rivera-Zamarripa, Francisco Rodríguez-Henríquez. Computing discrete logarithms in cryptographically-interesting characteristic-three finite fields. Advances in Mathematics of Communications, 2018, 12 (4) : 741-759. doi: 10.3934/amc.2018044 |
[17] |
Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics and Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001 |
[18] |
Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[19] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[20] |
Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]