November  2010, 4(4): 453-483. doi: 10.3934/amc.2010.4.453

On the generic construction of identity-based signatures with additional properties

1. 

University of Luxembourg, L-1359, Luxembourg

2. 

Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain

3. 

Ruhr-University Bochum, Bochum, D-44780, Germany

Received  November 2009 Published  November 2010

It has been stated / demonstrated by Shamir (Crypto 1984) / Bellare, Neven, and Namprempre (Eurocrypt 2004) that identity-based signature schemes can be generically constructed from standard digital signature schemes. In this paper we consider the following natural extension: is there a generic construction of "identity-based signature schemes with additional properties'' (such as identity-based blind signatures, verifiably encrypted signatures, ...) from standard signature schemes with the same properties? Our results show that this is possible for a number of properties including proxy signatures; (partially) blind signatures; verifiably encrypted signatures; undeniable signatures; forward-secure signatures; (strongly) key insulated signatures; online/offline signatures; threshold signatures; and (with some limitations) aggregate signatures.
   Using well-known results for standard signature schemes, we conclude that explicit identity-based signature schemes with additional properties can be constructed, enjoying sometimes better properties than specific schemes proposed until now. In particular, our work implies the existence of identity-based signatures with additional properties that are provably secure in the standard model, do not need bilinear pairings, or can be based on general assumptions.
Citation: David Galindo, Javier Herranz, Eike Kiltz. On the generic construction of identity-based signatures with additional properties. Advances in Mathematics of Communications, 2010, 4 (4) : 453-483. doi: 10.3934/amc.2010.4.453
References:
[1]

, IEEE P1363.3:, Standard for identity-based cryptographic techniques using pairings., (). Google Scholar

[2]

M. Abdalla, C. Namprempre and G. Neven, On the (im)possibility of blind message authentication codes,, in, (2006), 262. Google Scholar

[3]

M. Abe and E. Fujisaki, How to date blind signatures,, in, (1996), 244. Google Scholar

[4]

M. Abe and T. Okamoto, Provably secure partially blind signatures,, in, (2000), 271. Google Scholar

[5]

J. H. Ahn, M. Green and S. Hohenberger, Synchronized aggregate signatures: neew definitions, constructions and applications,, in, (2010). Google Scholar

[6]

S. S. Al-Riyami and K. G. Paterson, Certificateless public key cryptography,, in, (2003), 452. Google Scholar

[7]

G. Ateniese and B. De Medeiros, Identity-based chameleon hash and applications,, in, (2004), 164. Google Scholar

[8]

J. Baek and Y. Zheng, Identity-based threshold signature scheme from the bilinear pairings,, in, (2004), 124. Google Scholar

[9]

M. Bellare and S. K. Miner, A forward-secure digital signature scheme,, in, (1999), 431. Google Scholar

[10]

M. Bellare, C. Namprempre and G. Neven, Security proofs for identity-based identification and signature schemes,, Journal of Cryptology, 22 (2009), 1. doi: 10.1007/s00145-008-9028-8. Google Scholar

[11]

M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko, The one-more-rsa-inversion problems and the security of chaum's blind signature scheme,, Journal of Cryptology, 16 (2003), 185. doi: 10.1007/s00145-002-0120-1. Google Scholar

[12]

M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols,, in, (1993), 62. Google Scholar

[13]

A. Boldyreva, Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme,, in, (2002), 31. Google Scholar

[14]

A. Boldyreva, C. Gentry, A. O'Neill and D. H. Yum, Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing,, in, (2007), 276. Google Scholar

[15]

A. Boldyreva, A. Palacio, and B. Warinschi, Secure proxy signature schemes for delegation of signing rights,, Technical report, (). Google Scholar

[16]

D. Boneh and X. Boyen, Short signatures without random oracles and the SDH assumption in bilinear groups,, Journal of Cryptology, 21 (2008), 149. doi: 10.1007/s00145-007-9005-7. Google Scholar

[17]

D. Boneh and M. K. Franklin, Identity based encryption from the Weil pairing,, SIAM Journal on Computing, 32 (2003), 586. doi: 10.1137/S0097539701398521. Google Scholar

[18]

D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifiably encrypted signatures from bilinear maps,, in, (2003), 416. Google Scholar

[19]

D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing,, Journal of Cryptology, 17 (2004), 297. doi: 10.1007/s00145-004-0314-9. Google Scholar

[20]

J. Camenisch, M. Koprowski and B. Warinschi, Efficient blind signatures without random oracles,, in, (2004), 134. Google Scholar

[21]

R. Canneti, O. Goldreich and S. Halevi, The random oracle methodology, revisited,, Journal of the ACM, 51 (2004), 557. doi: 10.1145/1008731.1008734. Google Scholar

[22]

D. Chaum, Blind signatures for untraceable payments,, in, (1983), 199. Google Scholar

[23]

D. Chaum, Designated confirmer signatures,, in, (1995), 86. Google Scholar

[24]

D. Chaum and H. Van Antwerpen, Undeniable signatures,, in, (1989), 212. Google Scholar

[25]

X. Cheng, J. Liu and X. Wang, An identity-based signature and its threshold version,, in, (2005), 973. Google Scholar

[26]

X. Cheng, J. Liu and X. Wang, Identity-based aggregate and verifiably encrypted signatures from bilinear pairing,, in, (2005), 1046. Google Scholar

[27]

S. S. M. Chow, L. C. K. Hui, S. M Yiu and K. P. Chow, Two improved partially blind signature schemes from bilinear pairings,, in, (2005), 316. Google Scholar

[28]

I. Damgard, N. Fazio and A. Nicolosi, Non-interactive zero-knowledge from homomorphic encryption,, in, (2006), 41. Google Scholar

[29]

I. Damgard and T. P. Pedersen, New convertible undeniable signature schemes,, in, (1996), 372. Google Scholar

[30]

Y. Dodis and J. Katz, Chosen-ciphertext security of multiple encryption,, in, (2005), 188. Google Scholar

[31]

Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public key cryptosystems,, in, (2002), 65. Google Scholar

[32]

S. Even, O. Goldreich and S. Micali, On-line/off-line digital signatures,, Journal of Cryptology, 9 (1996), 35. doi: 10.1007/BF02254791. Google Scholar

[33]

M. Fischlin, Round-optimal composable blind signatures in the common reference string model,, in, (2006), 60. Google Scholar

[34]

S. Galbraith and W. Mao, Invisibility and anonymity of undeniable and confirmer signatures,, in, (2003), 80. Google Scholar

[35]

C. Gentry and Z. Ramzan, Identity-based aggregate signatures,, in, (2006), 257. Google Scholar

[36]

C. Gentry and A. Silverberg, Hierarchical id-based cryptography,, in, (2002), 548. Google Scholar

[37]

S. Goldwasser, S. Micali and R. L. Rivest, A digital signature scheme secure against adaptive chosen-message attacks,, SIAM Journal on Computing, 17 (1988), 281. doi: 10.1137/0217017. Google Scholar

[38]

S. Goldwasser and R. Ostrovsky, Invariant signatures and non-interactive zero-knowledge proofs are equivalent,, in, (1992), 228. Google Scholar

[39]

C. Gu and Y. Zhu, An id-based verifiable encrypted signature scheme based on Hess's scheme,, in, (2005), 42. Google Scholar

[40]

J. Herranz, Deterministic identity-based signatures for partial aggregation,, The Computer Journal, 49 (2006), 322. doi: 10.1093/comjnl/bxh153. Google Scholar

[41]

B. C. Hu, D. S. Wong, Z. Zhang and X. Deng, Certificateless signature: a new security model and an improved generic construction,, Designs, 42 (2007), 109. doi: 10.1007/s10623-006-9022-9. Google Scholar

[42]

M. Jakobsson, K. Sako and R. Impagliazzo, Designated verifier proofs and their applications,, in, (1996), 143. Google Scholar

[43]

R. Johnson, D. Molnar, D. X. Song and D. Wagner, Homomorphic signature schemes,, in, (2002), 244. Google Scholar

[44]

A. Juels, M. Luby and R. Ostrovsky, Security of blind digital signatures,, in, (1997), 150. Google Scholar

[45]

E. Kiltz, A. Mityagin, S. Panjwani and B. Raghava, Append-only signatures,, in, (2005), 434. Google Scholar

[46]

H. Krawczyk, Simple forward-secure signatures from any signature scheme,, in, (2000), 108. Google Scholar

[47]

H. Krawczyk and T. Rabin, Chameleon signatures,, in, (2000). Google Scholar

[48]

F. Laguillaumie and D. Vergnaud, Short undeniable signatures without random oracles: the missing link,, in, (2005), 283. Google Scholar

[49]

L. Lamport, Constructing digital signatures from a oneway function,, Technical report, (1979). Google Scholar

[50]

B. Libert and J-J. Quisquater, Identity based undeniable signatures,, in, (2004), 112. Google Scholar

[51]

Y. Liu, X. Yin and L. Qiu, Id-based forward-secure signature scheme from the bilinear pairings,, in, (2008), 179. doi: 10.1109/ISECS.2008.220. Google Scholar

[52]

S. Lu, R. Ostrovsky, A. Sahai, H. Shacham and B. Waters, Sequential aggregate signatures and multisignatures without random oracles,, in, (2006), 465. Google Scholar

[53]

A. Lysyanskaya, Unique signatures and verifiable random functions from the dh-ddh separation,, in, (2002), 597. Google Scholar

[54]

A. Lysyanskaya, S. Micali, L. Reyzin and H. Shacham, Sequential aggregate signatures from trapdoor permutations,, in, (2004), 74. Google Scholar

[55]

M. Mambo, K. Usuda and E. Okamoto, Proxy signatures: delegation of the power to sign messages,, IEICE Trans. Fundamentals, E79-A (1996), 1338. Google Scholar

[56]

G. Neven, Efficient sequential aggregate signed data,, in, (2008), 52. Google Scholar

[57]

T. Okamoto, Efficient blind and partially blind signatures without random oracles,, in, (2006), 80. Google Scholar

[58]

L. T. Phong and W. Ogata, New identity-based blind signature and blind decryption scheme in the standard model,, IEICE Trans. Fundamentals, E92-A (2009), 1822. Google Scholar

[59]

D. Pointcheval and J. Stern, Security arguments for digital signatures and blind signatures,, Journal of Cryptology, 13 (2000), 361. doi: 10.1007/s001450010003. Google Scholar

[60]

R. Rivest, A. Shamir and Y. Tauman, How to leak a secret, in "Proceedings of Asiacrypt'01" (ed. C. Boyd),, Springer-Verlag, (2001), 552. Google Scholar

[61]

R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems based on pairings,, in, (2000). Google Scholar

[62]

A. Shamir, Identity-based cryptosystems and signature schemes,, in, (1985), 47. Google Scholar

[63]

A. Shamir and Y. Tauman, Improved online/offline signature schemes,, in, (2001), 355. Google Scholar

[64]

W. Susilo, F. Zhang and Y. Mu, Identity-based strong designated verifier signature schemes,, in, (2004), 313. Google Scholar

[65]

W. Susilo, F. Zhang and Y. Mu, On the security of nominative signatures,, in, (2005), 329. Google Scholar

[66]

G. Wang, W. Gao, X. Wang and F. Li, One-round id-based blind signature scheme without ROS assumption,, in, (2008), 316. Google Scholar

[67]

J. Weng, S. Liu, K. Chen and X. Li, Identity-based key-insulated signature with secure key-updates,, in, (2006), 13. Google Scholar

[68]

J. Xu, Z. Zhang and D. Feng, ID-based proxy signature using bilinear pairings,, in, (2005), 359. Google Scholar

[69]

S. Xu, Y. Mu and W. Susilo, Efficient authentication scheme for routing in mobile ad hoc networks,, in, (2005), 854. Google Scholar

[70]

F. Zhang and K. Kim, Id-based blind signature and ring signature from pairings,, in, (2002), 533. Google Scholar

[71]

F. Zhang and K. Kim, Efficient ID-based blind signature and proxy signature from bilinear pairings,, in, (2003), 312. Google Scholar

[72]

Y. Zhou, Z. Cao and Z. Chai, Identity based key insulated signature,, in, (2006), 226. Google Scholar

show all references

References:
[1]

, IEEE P1363.3:, Standard for identity-based cryptographic techniques using pairings., (). Google Scholar

[2]

M. Abdalla, C. Namprempre and G. Neven, On the (im)possibility of blind message authentication codes,, in, (2006), 262. Google Scholar

[3]

M. Abe and E. Fujisaki, How to date blind signatures,, in, (1996), 244. Google Scholar

[4]

M. Abe and T. Okamoto, Provably secure partially blind signatures,, in, (2000), 271. Google Scholar

[5]

J. H. Ahn, M. Green and S. Hohenberger, Synchronized aggregate signatures: neew definitions, constructions and applications,, in, (2010). Google Scholar

[6]

S. S. Al-Riyami and K. G. Paterson, Certificateless public key cryptography,, in, (2003), 452. Google Scholar

[7]

G. Ateniese and B. De Medeiros, Identity-based chameleon hash and applications,, in, (2004), 164. Google Scholar

[8]

J. Baek and Y. Zheng, Identity-based threshold signature scheme from the bilinear pairings,, in, (2004), 124. Google Scholar

[9]

M. Bellare and S. K. Miner, A forward-secure digital signature scheme,, in, (1999), 431. Google Scholar

[10]

M. Bellare, C. Namprempre and G. Neven, Security proofs for identity-based identification and signature schemes,, Journal of Cryptology, 22 (2009), 1. doi: 10.1007/s00145-008-9028-8. Google Scholar

[11]

M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko, The one-more-rsa-inversion problems and the security of chaum's blind signature scheme,, Journal of Cryptology, 16 (2003), 185. doi: 10.1007/s00145-002-0120-1. Google Scholar

[12]

M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols,, in, (1993), 62. Google Scholar

[13]

A. Boldyreva, Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme,, in, (2002), 31. Google Scholar

[14]

A. Boldyreva, C. Gentry, A. O'Neill and D. H. Yum, Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing,, in, (2007), 276. Google Scholar

[15]

A. Boldyreva, A. Palacio, and B. Warinschi, Secure proxy signature schemes for delegation of signing rights,, Technical report, (). Google Scholar

[16]

D. Boneh and X. Boyen, Short signatures without random oracles and the SDH assumption in bilinear groups,, Journal of Cryptology, 21 (2008), 149. doi: 10.1007/s00145-007-9005-7. Google Scholar

[17]

D. Boneh and M. K. Franklin, Identity based encryption from the Weil pairing,, SIAM Journal on Computing, 32 (2003), 586. doi: 10.1137/S0097539701398521. Google Scholar

[18]

D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifiably encrypted signatures from bilinear maps,, in, (2003), 416. Google Scholar

[19]

D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing,, Journal of Cryptology, 17 (2004), 297. doi: 10.1007/s00145-004-0314-9. Google Scholar

[20]

J. Camenisch, M. Koprowski and B. Warinschi, Efficient blind signatures without random oracles,, in, (2004), 134. Google Scholar

[21]

R. Canneti, O. Goldreich and S. Halevi, The random oracle methodology, revisited,, Journal of the ACM, 51 (2004), 557. doi: 10.1145/1008731.1008734. Google Scholar

[22]

D. Chaum, Blind signatures for untraceable payments,, in, (1983), 199. Google Scholar

[23]

D. Chaum, Designated confirmer signatures,, in, (1995), 86. Google Scholar

[24]

D. Chaum and H. Van Antwerpen, Undeniable signatures,, in, (1989), 212. Google Scholar

[25]

X. Cheng, J. Liu and X. Wang, An identity-based signature and its threshold version,, in, (2005), 973. Google Scholar

[26]

X. Cheng, J. Liu and X. Wang, Identity-based aggregate and verifiably encrypted signatures from bilinear pairing,, in, (2005), 1046. Google Scholar

[27]

S. S. M. Chow, L. C. K. Hui, S. M Yiu and K. P. Chow, Two improved partially blind signature schemes from bilinear pairings,, in, (2005), 316. Google Scholar

[28]

I. Damgard, N. Fazio and A. Nicolosi, Non-interactive zero-knowledge from homomorphic encryption,, in, (2006), 41. Google Scholar

[29]

I. Damgard and T. P. Pedersen, New convertible undeniable signature schemes,, in, (1996), 372. Google Scholar

[30]

Y. Dodis and J. Katz, Chosen-ciphertext security of multiple encryption,, in, (2005), 188. Google Scholar

[31]

Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public key cryptosystems,, in, (2002), 65. Google Scholar

[32]

S. Even, O. Goldreich and S. Micali, On-line/off-line digital signatures,, Journal of Cryptology, 9 (1996), 35. doi: 10.1007/BF02254791. Google Scholar

[33]

M. Fischlin, Round-optimal composable blind signatures in the common reference string model,, in, (2006), 60. Google Scholar

[34]

S. Galbraith and W. Mao, Invisibility and anonymity of undeniable and confirmer signatures,, in, (2003), 80. Google Scholar

[35]

C. Gentry and Z. Ramzan, Identity-based aggregate signatures,, in, (2006), 257. Google Scholar

[36]

C. Gentry and A. Silverberg, Hierarchical id-based cryptography,, in, (2002), 548. Google Scholar

[37]

S. Goldwasser, S. Micali and R. L. Rivest, A digital signature scheme secure against adaptive chosen-message attacks,, SIAM Journal on Computing, 17 (1988), 281. doi: 10.1137/0217017. Google Scholar

[38]

S. Goldwasser and R. Ostrovsky, Invariant signatures and non-interactive zero-knowledge proofs are equivalent,, in, (1992), 228. Google Scholar

[39]

C. Gu and Y. Zhu, An id-based verifiable encrypted signature scheme based on Hess's scheme,, in, (2005), 42. Google Scholar

[40]

J. Herranz, Deterministic identity-based signatures for partial aggregation,, The Computer Journal, 49 (2006), 322. doi: 10.1093/comjnl/bxh153. Google Scholar

[41]

B. C. Hu, D. S. Wong, Z. Zhang and X. Deng, Certificateless signature: a new security model and an improved generic construction,, Designs, 42 (2007), 109. doi: 10.1007/s10623-006-9022-9. Google Scholar

[42]

M. Jakobsson, K. Sako and R. Impagliazzo, Designated verifier proofs and their applications,, in, (1996), 143. Google Scholar

[43]

R. Johnson, D. Molnar, D. X. Song and D. Wagner, Homomorphic signature schemes,, in, (2002), 244. Google Scholar

[44]

A. Juels, M. Luby and R. Ostrovsky, Security of blind digital signatures,, in, (1997), 150. Google Scholar

[45]

E. Kiltz, A. Mityagin, S. Panjwani and B. Raghava, Append-only signatures,, in, (2005), 434. Google Scholar

[46]

H. Krawczyk, Simple forward-secure signatures from any signature scheme,, in, (2000), 108. Google Scholar

[47]

H. Krawczyk and T. Rabin, Chameleon signatures,, in, (2000). Google Scholar

[48]

F. Laguillaumie and D. Vergnaud, Short undeniable signatures without random oracles: the missing link,, in, (2005), 283. Google Scholar

[49]

L. Lamport, Constructing digital signatures from a oneway function,, Technical report, (1979). Google Scholar

[50]

B. Libert and J-J. Quisquater, Identity based undeniable signatures,, in, (2004), 112. Google Scholar

[51]

Y. Liu, X. Yin and L. Qiu, Id-based forward-secure signature scheme from the bilinear pairings,, in, (2008), 179. doi: 10.1109/ISECS.2008.220. Google Scholar

[52]

S. Lu, R. Ostrovsky, A. Sahai, H. Shacham and B. Waters, Sequential aggregate signatures and multisignatures without random oracles,, in, (2006), 465. Google Scholar

[53]

A. Lysyanskaya, Unique signatures and verifiable random functions from the dh-ddh separation,, in, (2002), 597. Google Scholar

[54]

A. Lysyanskaya, S. Micali, L. Reyzin and H. Shacham, Sequential aggregate signatures from trapdoor permutations,, in, (2004), 74. Google Scholar

[55]

M. Mambo, K. Usuda and E. Okamoto, Proxy signatures: delegation of the power to sign messages,, IEICE Trans. Fundamentals, E79-A (1996), 1338. Google Scholar

[56]

G. Neven, Efficient sequential aggregate signed data,, in, (2008), 52. Google Scholar

[57]

T. Okamoto, Efficient blind and partially blind signatures without random oracles,, in, (2006), 80. Google Scholar

[58]

L. T. Phong and W. Ogata, New identity-based blind signature and blind decryption scheme in the standard model,, IEICE Trans. Fundamentals, E92-A (2009), 1822. Google Scholar

[59]

D. Pointcheval and J. Stern, Security arguments for digital signatures and blind signatures,, Journal of Cryptology, 13 (2000), 361. doi: 10.1007/s001450010003. Google Scholar

[60]

R. Rivest, A. Shamir and Y. Tauman, How to leak a secret, in "Proceedings of Asiacrypt'01" (ed. C. Boyd),, Springer-Verlag, (2001), 552. Google Scholar

[61]

R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems based on pairings,, in, (2000). Google Scholar

[62]

A. Shamir, Identity-based cryptosystems and signature schemes,, in, (1985), 47. Google Scholar

[63]

A. Shamir and Y. Tauman, Improved online/offline signature schemes,, in, (2001), 355. Google Scholar

[64]

W. Susilo, F. Zhang and Y. Mu, Identity-based strong designated verifier signature schemes,, in, (2004), 313. Google Scholar

[65]

W. Susilo, F. Zhang and Y. Mu, On the security of nominative signatures,, in, (2005), 329. Google Scholar

[66]

G. Wang, W. Gao, X. Wang and F. Li, One-round id-based blind signature scheme without ROS assumption,, in, (2008), 316. Google Scholar

[67]

J. Weng, S. Liu, K. Chen and X. Li, Identity-based key-insulated signature with secure key-updates,, in, (2006), 13. Google Scholar

[68]

J. Xu, Z. Zhang and D. Feng, ID-based proxy signature using bilinear pairings,, in, (2005), 359. Google Scholar

[69]

S. Xu, Y. Mu and W. Susilo, Efficient authentication scheme for routing in mobile ad hoc networks,, in, (2005), 854. Google Scholar

[70]

F. Zhang and K. Kim, Id-based blind signature and ring signature from pairings,, in, (2002), 533. Google Scholar

[71]

F. Zhang and K. Kim, Efficient ID-based blind signature and proxy signature from bilinear pairings,, in, (2003), 312. Google Scholar

[72]

Y. Zhou, Z. Cao and Z. Chai, Identity based key insulated signature,, in, (2006), 226. Google Scholar

[1]

Sikhar Patranabis, Debdeep Mukhopadhyay. Identity-based key aggregate cryptosystem from multilinear maps. Advances in Mathematics of Communications, 2019, 13 (4) : 759-778. doi: 10.3934/amc.2019044

[2]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[3]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[4]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[5]

Zoltán Faigl, Miklós Telek. Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures. Journal of Industrial & Management Optimization, 2015, 11 (3) : 887-920. doi: 10.3934/jimo.2015.11.887

[6]

Gregory M. Zaverucha, Douglas R. Stinson. Short one-time signatures. Advances in Mathematics of Communications, 2011, 5 (3) : 473-488. doi: 10.3934/amc.2011.5.473

[7]

Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019085

[8]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

[9]

Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249

[10]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[11]

Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012

[12]

Vincent Astier, Thomas Unger. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements, 2018, 25: 16-26. doi: 10.3934/era.2018.25.003

[13]

Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1

[14]

Gyula Csató, Bernard Dacorogna. An identity involving exterior derivatives and applications to Gaffney inequality. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 531-544. doi: 10.3934/dcdss.2012.5.531

[15]

Raz Kupferman, Asaf Shachar. A geometric perspective on the Piola identity in Riemannian settings. Journal of Geometric Mechanics, 2019, 11 (1) : 59-76. doi: 10.3934/jgm.2019004

[16]

Lidong Chen, Dustin Moody. New mission and opportunity for mathematics researchers: cryptography in the quantum era. Advances in Mathematics of Communications, 2020, 14 (1) : 161-169. doi: 10.3934/amc.2020013

[17]

Changyou Wang, Shenzhou Zheng. Energy identity for a class of approximate biharmonic maps into sphere in dimension four. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 861-878. doi: 10.3934/dcds.2013.33.861

[18]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. A discrete Liouville identity for numerical reconstruction of Schrödinger potentials. Inverse Problems & Imaging, 2017, 11 (4) : 623-641. doi: 10.3934/ipi.2017029

[19]

Giovanni P. Crespi, Ivan Ginchev, Matteo Rocca. Two approaches toward constrained vector optimization and identity of the solutions. Journal of Industrial & Management Optimization, 2005, 1 (4) : 549-563. doi: 10.3934/jimo.2005.1.549

[20]

David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]