Advanced Search
Article Contents
Article Contents

Input-state-output representations and constructions of finite support 2D convolutional codes

Abstract Related Papers Cited by
  • Two-dimensional convolutional codes are considered, with codewords having compact support indexed in $\mathbb N$2 and taking values in $\mathbb F$n, where $\mathbb F$ is a finite field. Input-state-output representations of these codes are introduced and several aspects of such representations are discussed. Constructive procedures of such codes with a designed distance are also presented.
    Mathematics Subject Classification: Primary: 94B10, 93C35; Secondary: 93B25.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Fornasini and G. Marchesini, Structure and properties of two-dimensional systems, in "Multidimensional Systems, Techniques and Applications'' (ed. S.G. Tzafestas), (1986), 37-88.


    E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inf. Th., 40 (1994), 1068-1082.doi: 10.1109/18.335967.


    H. Gluesing-Luersen, J. Rosenthal and P. A. Weiner, Duality between mutidimensinal convolutional codes and systems, in "Advances in Mathematical Systems Theory, a Volume in Honor of Diedrich Hinrichsen'' (eds. F. Colonius, U. Helmke, F. Wirth and D. Prtzel-Wolters), Birkhuser, Boston, (2000), 135-150.


    J. Justesen and S. Forchhammer, Two dimensional information theory and coding. With applications to graphics data and high-density storage media, Cambridge University Press, Cambridge, (2010), 171.


    T. Kailath, "Linear Systems,'' Prentice Hall, Englewood Cliffs, NJ, 1980.


    B. Kitchens, Multidimensional convolutional codes, SIAM J. Discrete Math., 15 (2002), 367-381.doi: 10.1137/S0895480100378495.


    B. C. Lévy, "2-D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,'' Ph.D thesis, Stanford University, USA, 1981.


    R. G. Lobo, "On Locally Invertible Encoders and Muldimensional Convolutional Codes,'' Ph.D thesis, North Carolina State University, USA, 2006.


    P. Rocha, "Structure and Representation of 2-D Systems,'' Ph.D thesis, Groningen University, Holland, 1990.


    J. Rosenthal, J. M. Schumacher and E. V. York, On behaviors and convolutional codes, IEEE Trans. Inf. Th., 42 (1996), 1881-1891.doi: 10.1109/18.556682.


    J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15-32.doi: 10.1007/s002000050120.


    J. Rosenthal and E. V. York, BCH convolutional codes, IEEE Trans. Inf. Th., 45 (1999), 1833-1844.doi: 10.1109/18.782104.


    J. Singh and M. L. Singh, A new family of two-dimensional codes for optical CDMA systems, Optik - International Journal for Light and Electron Optics, 120 (2009), 959-962.


    J. Swartz, T. Pavlidis and Y. P. Wang, Information encoding with two-dimensional bar codes, IEEE Computer Society, 25 (1992), 18-28.


    M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes: an algebraic approach, Multidimensional Systems and Signal Processing, 5 (1994), 231-243.doi: 10.1007/BF00980707.


    P. Weiner, "Muldimensional Convolutional Codes,'' Ph.D thesis, University of Notre Dame, USA, 1998.


    X.-L. Zhou and Y. Hu, Multilength two-dimensional codes for optical cdma system, Optoelectronics Letters, 1 (2005), 232-234.doi: 10.1007/BF03033851.

  • 加载中

Article Metrics

HTML views() PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint