November  2010, 4(4): 533-545. doi: 10.3934/amc.2010.4.533

Input-state-output representations and constructions of finite support 2D convolutional codes

1. 

Department of Mathematics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal, Portugal

2. 

Center of Operation Research, Department of Statistics, Mathematics and Informatics, University Miguel Hernández, Av. Universidad s/n, 0302 Elche, Spain

Received  December 2009 Revised  June 2010 Published  November 2010

Two-dimensional convolutional codes are considered, with codewords having compact support indexed in $\mathbb N$2 and taking values in $\mathbb F$n, where $\mathbb F$ is a finite field. Input-state-output representations of these codes are introduced and several aspects of such representations are discussed. Constructive procedures of such codes with a designed distance are also presented.
Citation: Diego Napp, Carmen Perea, Raquel Pinto. Input-state-output representations and constructions of finite support 2D convolutional codes. Advances in Mathematics of Communications, 2010, 4 (4) : 533-545. doi: 10.3934/amc.2010.4.533
References:
[1]

E. Fornasini and G. Marchesini, Structure and properties of two-dimensional systems,, in, (1986), 37.   Google Scholar

[2]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes,, IEEE Trans. Inf. Th., 40 (1994), 1068.  doi: 10.1109/18.335967.  Google Scholar

[3]

H. Gluesing-Luersen, J. Rosenthal and P. A. Weiner, Duality between mutidimensinal convolutional codes and systems,, in, (2000), 135.   Google Scholar

[4]

J. Justesen and S. Forchhammer, Two dimensional information theory and coding. With applications to graphics data and high-density storage media,, Cambridge University Press, (2010).   Google Scholar

[5]

T. Kailath, "Linear Systems,'', Prentice Hall, (1980).   Google Scholar

[6]

B. Kitchens, Multidimensional convolutional codes,, SIAM J. Discrete Math., 15 (2002), 367.  doi: 10.1137/S0895480100378495.  Google Scholar

[7]

B. C. Lévy, "2-D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,'', Ph.D thesis, (1981).   Google Scholar

[8]

R. G. Lobo, "On Locally Invertible Encoders and Muldimensional Convolutional Codes,'', Ph.D thesis, (2006).   Google Scholar

[9]

P. Rocha, "Structure and Representation of 2-D Systems,'', Ph.D thesis, (1990).   Google Scholar

[10]

J. Rosenthal, J. M. Schumacher and E. V. York, On behaviors and convolutional codes,, IEEE Trans. Inf. Th., 42 (1996), 1881.  doi: 10.1109/18.556682.  Google Scholar

[11]

J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes,, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15.  doi: 10.1007/s002000050120.  Google Scholar

[12]

J. Rosenthal and E. V. York, BCH convolutional codes,, IEEE Trans. Inf. Th., 45 (1999), 1833.  doi: 10.1109/18.782104.  Google Scholar

[13]

J. Singh and M. L. Singh, A new family of two-dimensional codes for optical CDMA systems,, Optik - International Journal for Light and Electron Optics, 120 (2009), 959.   Google Scholar

[14]

J. Swartz, T. Pavlidis and Y. P. Wang, Information encoding with two-dimensional bar codes,, IEEE Computer Society, 25 (1992), 18.   Google Scholar

[15]

M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes: an algebraic approach,, Multidimensional Systems and Signal Processing, 5 (1994), 231.  doi: 10.1007/BF00980707.  Google Scholar

[16]

P. Weiner, "Muldimensional Convolutional Codes,'', Ph.D thesis, (1998).   Google Scholar

[17]

X.-L. Zhou and Y. Hu, Multilength two-dimensional codes for optical cdma system,, Optoelectronics Letters, 1 (2005), 232.  doi: 10.1007/BF03033851.  Google Scholar

show all references

References:
[1]

E. Fornasini and G. Marchesini, Structure and properties of two-dimensional systems,, in, (1986), 37.   Google Scholar

[2]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes,, IEEE Trans. Inf. Th., 40 (1994), 1068.  doi: 10.1109/18.335967.  Google Scholar

[3]

H. Gluesing-Luersen, J. Rosenthal and P. A. Weiner, Duality between mutidimensinal convolutional codes and systems,, in, (2000), 135.   Google Scholar

[4]

J. Justesen and S. Forchhammer, Two dimensional information theory and coding. With applications to graphics data and high-density storage media,, Cambridge University Press, (2010).   Google Scholar

[5]

T. Kailath, "Linear Systems,'', Prentice Hall, (1980).   Google Scholar

[6]

B. Kitchens, Multidimensional convolutional codes,, SIAM J. Discrete Math., 15 (2002), 367.  doi: 10.1137/S0895480100378495.  Google Scholar

[7]

B. C. Lévy, "2-D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,'', Ph.D thesis, (1981).   Google Scholar

[8]

R. G. Lobo, "On Locally Invertible Encoders and Muldimensional Convolutional Codes,'', Ph.D thesis, (2006).   Google Scholar

[9]

P. Rocha, "Structure and Representation of 2-D Systems,'', Ph.D thesis, (1990).   Google Scholar

[10]

J. Rosenthal, J. M. Schumacher and E. V. York, On behaviors and convolutional codes,, IEEE Trans. Inf. Th., 42 (1996), 1881.  doi: 10.1109/18.556682.  Google Scholar

[11]

J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes,, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15.  doi: 10.1007/s002000050120.  Google Scholar

[12]

J. Rosenthal and E. V. York, BCH convolutional codes,, IEEE Trans. Inf. Th., 45 (1999), 1833.  doi: 10.1109/18.782104.  Google Scholar

[13]

J. Singh and M. L. Singh, A new family of two-dimensional codes for optical CDMA systems,, Optik - International Journal for Light and Electron Optics, 120 (2009), 959.   Google Scholar

[14]

J. Swartz, T. Pavlidis and Y. P. Wang, Information encoding with two-dimensional bar codes,, IEEE Computer Society, 25 (1992), 18.   Google Scholar

[15]

M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes: an algebraic approach,, Multidimensional Systems and Signal Processing, 5 (1994), 231.  doi: 10.1007/BF00980707.  Google Scholar

[16]

P. Weiner, "Muldimensional Convolutional Codes,'', Ph.D thesis, (1998).   Google Scholar

[17]

X.-L. Zhou and Y. Hu, Multilength two-dimensional codes for optical cdma system,, Optoelectronics Letters, 1 (2005), 232.  doi: 10.1007/BF03033851.  Google Scholar

[1]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[2]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[3]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[4]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[5]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[6]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[7]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[10]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[15]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[16]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[17]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[18]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[19]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[20]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]