November  2010, 4(4): 567-578. doi: 10.3934/amc.2010.4.567

On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual

1. 

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain, Spain

2. 

Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol’shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russian Federation

Received  February 2010 Published  November 2010

We characterize all $q$-ary linear completely regular codes with covering radius $\rho=2$ when the dual codes are antipodal. These completely regular codes are extensions of linear completely regular codes with covering radius 1, which we also classify. For $\rho=2$, we give a list of all such codes known to us. This also gives the characterization of two weight linear antipodal codes. Finally, for a class of completely regular codes with covering radius $\rho=2$ and antipodal dual, some interesting properties on self-duality and lifted codes are pointed out.
Citation: Joaquim Borges, Josep Rifà, Victor A. Zinoviev. On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual. Advances in Mathematics of Communications, 2010, 4 (4) : 567-578. doi: 10.3934/amc.2010.4.567
References:
[1]

L. A. Bassalygo, G. V. Zaitsev and V. A. Zinoviev, Uniformly close-packed codes,, Problems Inform. Transmiss., 10 (1974), 9.   Google Scholar

[2]

L. A. Bassalygo and V. A. Zinoviev, A remark on uniformly packed codes,, Problems Inform. Transmiss., 13 (1977), 22.   Google Scholar

[3]

G. Bogdanova, V. A. Zinoviev and T. J. Todorov, On construction of $q$-ary equidistant codes,, Problems Inform. Transmiss., 43 (2007), 13.  doi: 10.1134/S0032946007040023.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes,, Ars Combin., 18 (1984), 181.   Google Scholar

[5]

J. Borges and J. Rifà, On the nonexistence of completely transitive codes,, IEEE Trans. Inform. Theory, 46 (2000), 279.  doi: 10.1109/18.817528.  Google Scholar

[6]

J. Borges, J. Rifà and V. A. Zinoviev, Nonexistence of completely transitive codes with error-correcting capability $e > 3$,, IEEE Trans. Inform. Theory, 47 (2001), 1619.  doi: 10.1109/18.923747.  Google Scholar

[7]

J. Borges, J. Rifà and V. A. Zinoviev, On non-antipodal binary completely regular codes,, Discrete Math., 308 (2008), 3508.  doi: 10.1016/j.disc.2007.07.008.  Google Scholar

[8]

J. Borges, J. Rifà and V. A. Zinoviev, On linear completely regular codes with covering radius $\rho=1$,, preprint, ().   Google Scholar

[9]

A. E. Brouwer, A. M. Cohen and A. Neumaier, "Distance-Regular Graphs,", Springer-Verlag, (1989).   Google Scholar

[10]

K. A. Bush, Orthogonal arrays of index unity,, Ann. Math. Stat., 23 (1952), 426.  doi: 10.1214/aoms/1177729387.  Google Scholar

[11]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97.  doi: 10.1112/blms/18.2.97.  Google Scholar

[12]

C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs,", CRC Press, (1996).  doi: 10.1201/9781420049954.  Google Scholar

[13]

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,", Elsevier Science, (1997).   Google Scholar

[14]

P. Delsarte, Two-weight linear codes and strongly regular graphs,, MBLE Research Laboratory, (1971).   Google Scholar

[15]

P. Delsarte, An algebraic approach to the association schemes of coding theory,, Philips Research Reports Supplements, 10 (1973).   Google Scholar

[16]

D. G. Fon-Der-Flaas, Perfect $2$-coloring of hypercube,, Siberian Math. J., 48 (2007), 923.  doi: 10.1007/s11202-007-0075-4.  Google Scholar

[17]

D. G. Fon-Der-Flaas, Perfect $2$-coloring of the $12$-cube that attain the bound on correlation immunity,, Siberian Electronic Math. Reports, 4 (2007), 292.   Google Scholar

[18]

M. Giudici and C. E. Praeger, Completely transitive codes in Hamming graphs,, Europ. J. Combinatorics, 20 (1999), 647.  doi: 10.1006/eujc.1999.0313.  Google Scholar

[19]

J. M. Goethals and H. C. A. Van Tilborg, Uniformly packed codes,, Philips Res., 30 (1975), 9.   Google Scholar

[20]

J. H. Koolen, W. S. Lee and W. J. Martin, Arithmetic completely regular codes,, preprint, ().   Google Scholar

[21]

F. J. MacWilliams, A theorem on the distribution of weights in a systematic code,, Bell System Techn. J., 42 (1963), 79.   Google Scholar

[22]

F. J. MacWilliams and N. J. A. Sloane, "The Theory if Error-Correcting Codes,", Elsevier, (1977).   Google Scholar

[23]

A. Neumaier, Completely regular codes,, Discrete Math., 106/107 (1992), 353.  doi: 10.1016/0012-365X(92)90565-W.  Google Scholar

[24]

J. Rifà and V. A. Zinoviev, On new completely regular $q$-ary codes,, Problems Inform. Transmiss., 43 (2007), 97.  doi: 10.1134/S0032946007020032.  Google Scholar

[25]

J. Rifà and V. A. Zinoviev, New completely regular $q$-ary codes, based on Kronecker products,, IEEE Trans. Inform. Theory, 56 (2010), 266.  doi: 10.1109/TIT.2009.2034812.  Google Scholar

[26]

J. Rifà and V. A. Zinoviev, On lifting perfect codes,, preprint, ().   Google Scholar

[27]

N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Class of maximal equidistant codes,, Problems Inform. Transmiss., 5 (1969), 84.   Google Scholar

[28]

N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Uniformly close-packed codes,, Problems Inform. Transmiss., 7 (1971), 38.   Google Scholar

[29]

J. Singer, A theorem in finite projective geometry, and some applications to number theory,, Trans. Amer. Math. Soc., 43 (1938), 377.   Google Scholar

[30]

P. Solé, Completely regular codes and completely transitive codes,, Discrete Math., 81 (1990), 193.  doi: 10.1016/0012-365X(90)90152-8.  Google Scholar

[31]

A. Tietäväinen, On the non-existence of perfect codes over finite fields,, SIAM J. Appl. Math., 24 (1973), 88.  doi: 10.1137/0124010.  Google Scholar

[32]

H. C. A. Van Tilborg, "Uniformly Packed Codes,", Ph.D thesis, (1976).   Google Scholar

[33]

V. A. Zinoviev and V. K. Leontiev, The nonexistence of perfect codes over Galois fields,, Problems Control Inform. Th., 2 (1973), 16.   Google Scholar

show all references

References:
[1]

L. A. Bassalygo, G. V. Zaitsev and V. A. Zinoviev, Uniformly close-packed codes,, Problems Inform. Transmiss., 10 (1974), 9.   Google Scholar

[2]

L. A. Bassalygo and V. A. Zinoviev, A remark on uniformly packed codes,, Problems Inform. Transmiss., 13 (1977), 22.   Google Scholar

[3]

G. Bogdanova, V. A. Zinoviev and T. J. Todorov, On construction of $q$-ary equidistant codes,, Problems Inform. Transmiss., 43 (2007), 13.  doi: 10.1134/S0032946007040023.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes,, Ars Combin., 18 (1984), 181.   Google Scholar

[5]

J. Borges and J. Rifà, On the nonexistence of completely transitive codes,, IEEE Trans. Inform. Theory, 46 (2000), 279.  doi: 10.1109/18.817528.  Google Scholar

[6]

J. Borges, J. Rifà and V. A. Zinoviev, Nonexistence of completely transitive codes with error-correcting capability $e > 3$,, IEEE Trans. Inform. Theory, 47 (2001), 1619.  doi: 10.1109/18.923747.  Google Scholar

[7]

J. Borges, J. Rifà and V. A. Zinoviev, On non-antipodal binary completely regular codes,, Discrete Math., 308 (2008), 3508.  doi: 10.1016/j.disc.2007.07.008.  Google Scholar

[8]

J. Borges, J. Rifà and V. A. Zinoviev, On linear completely regular codes with covering radius $\rho=1$,, preprint, ().   Google Scholar

[9]

A. E. Brouwer, A. M. Cohen and A. Neumaier, "Distance-Regular Graphs,", Springer-Verlag, (1989).   Google Scholar

[10]

K. A. Bush, Orthogonal arrays of index unity,, Ann. Math. Stat., 23 (1952), 426.  doi: 10.1214/aoms/1177729387.  Google Scholar

[11]

A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97.  doi: 10.1112/blms/18.2.97.  Google Scholar

[12]

C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs,", CRC Press, (1996).  doi: 10.1201/9781420049954.  Google Scholar

[13]

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,", Elsevier Science, (1997).   Google Scholar

[14]

P. Delsarte, Two-weight linear codes and strongly regular graphs,, MBLE Research Laboratory, (1971).   Google Scholar

[15]

P. Delsarte, An algebraic approach to the association schemes of coding theory,, Philips Research Reports Supplements, 10 (1973).   Google Scholar

[16]

D. G. Fon-Der-Flaas, Perfect $2$-coloring of hypercube,, Siberian Math. J., 48 (2007), 923.  doi: 10.1007/s11202-007-0075-4.  Google Scholar

[17]

D. G. Fon-Der-Flaas, Perfect $2$-coloring of the $12$-cube that attain the bound on correlation immunity,, Siberian Electronic Math. Reports, 4 (2007), 292.   Google Scholar

[18]

M. Giudici and C. E. Praeger, Completely transitive codes in Hamming graphs,, Europ. J. Combinatorics, 20 (1999), 647.  doi: 10.1006/eujc.1999.0313.  Google Scholar

[19]

J. M. Goethals and H. C. A. Van Tilborg, Uniformly packed codes,, Philips Res., 30 (1975), 9.   Google Scholar

[20]

J. H. Koolen, W. S. Lee and W. J. Martin, Arithmetic completely regular codes,, preprint, ().   Google Scholar

[21]

F. J. MacWilliams, A theorem on the distribution of weights in a systematic code,, Bell System Techn. J., 42 (1963), 79.   Google Scholar

[22]

F. J. MacWilliams and N. J. A. Sloane, "The Theory if Error-Correcting Codes,", Elsevier, (1977).   Google Scholar

[23]

A. Neumaier, Completely regular codes,, Discrete Math., 106/107 (1992), 353.  doi: 10.1016/0012-365X(92)90565-W.  Google Scholar

[24]

J. Rifà and V. A. Zinoviev, On new completely regular $q$-ary codes,, Problems Inform. Transmiss., 43 (2007), 97.  doi: 10.1134/S0032946007020032.  Google Scholar

[25]

J. Rifà and V. A. Zinoviev, New completely regular $q$-ary codes, based on Kronecker products,, IEEE Trans. Inform. Theory, 56 (2010), 266.  doi: 10.1109/TIT.2009.2034812.  Google Scholar

[26]

J. Rifà and V. A. Zinoviev, On lifting perfect codes,, preprint, ().   Google Scholar

[27]

N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Class of maximal equidistant codes,, Problems Inform. Transmiss., 5 (1969), 84.   Google Scholar

[28]

N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Uniformly close-packed codes,, Problems Inform. Transmiss., 7 (1971), 38.   Google Scholar

[29]

J. Singer, A theorem in finite projective geometry, and some applications to number theory,, Trans. Amer. Math. Soc., 43 (1938), 377.   Google Scholar

[30]

P. Solé, Completely regular codes and completely transitive codes,, Discrete Math., 81 (1990), 193.  doi: 10.1016/0012-365X(90)90152-8.  Google Scholar

[31]

A. Tietäväinen, On the non-existence of perfect codes over finite fields,, SIAM J. Appl. Math., 24 (1973), 88.  doi: 10.1137/0124010.  Google Scholar

[32]

H. C. A. Van Tilborg, "Uniformly Packed Codes,", Ph.D thesis, (1976).   Google Scholar

[33]

V. A. Zinoviev and V. K. Leontiev, The nonexistence of perfect codes over Galois fields,, Problems Control Inform. Th., 2 (1973), 16.   Google Scholar

[1]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[2]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[3]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[4]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[5]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[6]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[7]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[8]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[9]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[10]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[11]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[12]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[13]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[14]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[15]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[16]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[17]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[18]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[19]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[20]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]