-
Previous Article
On dual extremal maximal self-orthogonal codes of Type I-IV
- AMC Home
- This Issue
-
Next Article
Bounds for binary codes relative to pseudo-distances of $k$ points
On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual
1. | Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain, Spain |
2. | Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol’shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russian Federation |
References:
[1] |
L. A. Bassalygo, G. V. Zaitsev and V. A. Zinoviev, Uniformly close-packed codes,, Problems Inform. Transmiss., 10 (1974), 9.
|
[2] |
L. A. Bassalygo and V. A. Zinoviev, A remark on uniformly packed codes,, Problems Inform. Transmiss., 13 (1977), 22.
|
[3] |
G. Bogdanova, V. A. Zinoviev and T. J. Todorov, On construction of $q$-ary equidistant codes,, Problems Inform. Transmiss., 43 (2007), 13.
doi: 10.1134/S0032946007040023. |
[4] |
A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes,, Ars Combin., 18 (1984), 181.
|
[5] |
J. Borges and J. Rifà, On the nonexistence of completely transitive codes,, IEEE Trans. Inform. Theory, 46 (2000), 279.
doi: 10.1109/18.817528. |
[6] |
J. Borges, J. Rifà and V. A. Zinoviev, Nonexistence of completely transitive codes with error-correcting capability $e > 3$,, IEEE Trans. Inform. Theory, 47 (2001), 1619.
doi: 10.1109/18.923747. |
[7] |
J. Borges, J. Rifà and V. A. Zinoviev, On non-antipodal binary completely regular codes,, Discrete Math., 308 (2008), 3508.
doi: 10.1016/j.disc.2007.07.008. |
[8] |
J. Borges, J. Rifà and V. A. Zinoviev, On linear completely regular codes with covering radius $\rho=1$,, preprint, (). Google Scholar |
[9] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, "Distance-Regular Graphs,", Springer-Verlag, (1989).
|
[10] |
K. A. Bush, Orthogonal arrays of index unity,, Ann. Math. Stat., 23 (1952), 426.
doi: 10.1214/aoms/1177729387. |
[11] |
A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97.
doi: 10.1112/blms/18.2.97. |
[12] |
C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs,", CRC Press, (1996).
doi: 10.1201/9781420049954. |
[13] |
G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,", Elsevier Science, (1997).
|
[14] |
P. Delsarte, Two-weight linear codes and strongly regular graphs,, MBLE Research Laboratory, (1971). Google Scholar |
[15] |
P. Delsarte, An algebraic approach to the association schemes of coding theory,, Philips Research Reports Supplements, 10 (1973).
|
[16] |
D. G. Fon-Der-Flaas, Perfect $2$-coloring of hypercube,, Siberian Math. J., 48 (2007), 923.
doi: 10.1007/s11202-007-0075-4. |
[17] |
D. G. Fon-Der-Flaas, Perfect $2$-coloring of the $12$-cube that attain the bound on correlation immunity,, Siberian Electronic Math. Reports, 4 (2007), 292.
|
[18] |
M. Giudici and C. E. Praeger, Completely transitive codes in Hamming graphs,, Europ. J. Combinatorics, 20 (1999), 647.
doi: 10.1006/eujc.1999.0313. |
[19] |
J. M. Goethals and H. C. A. Van Tilborg, Uniformly packed codes,, Philips Res., 30 (1975), 9.
|
[20] |
J. H. Koolen, W. S. Lee and W. J. Martin, Arithmetic completely regular codes,, preprint, (). Google Scholar |
[21] |
F. J. MacWilliams, A theorem on the distribution of weights in a systematic code,, Bell System Techn. J., 42 (1963), 79.
|
[22] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory if Error-Correcting Codes,", Elsevier, (1977).
|
[23] |
A. Neumaier, Completely regular codes,, Discrete Math., 106/107 (1992), 353.
doi: 10.1016/0012-365X(92)90565-W. |
[24] |
J. Rifà and V. A. Zinoviev, On new completely regular $q$-ary codes,, Problems Inform. Transmiss., 43 (2007), 97.
doi: 10.1134/S0032946007020032. |
[25] |
J. Rifà and V. A. Zinoviev, New completely regular $q$-ary codes, based on Kronecker products,, IEEE Trans. Inform. Theory, 56 (2010), 266.
doi: 10.1109/TIT.2009.2034812. |
[26] |
J. Rifà and V. A. Zinoviev, On lifting perfect codes,, preprint, (). Google Scholar |
[27] |
N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Class of maximal equidistant codes,, Problems Inform. Transmiss., 5 (1969), 84.
|
[28] |
N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Uniformly close-packed codes,, Problems Inform. Transmiss., 7 (1971), 38.
|
[29] |
J. Singer, A theorem in finite projective geometry, and some applications to number theory,, Trans. Amer. Math. Soc., 43 (1938), 377.
|
[30] |
P. Solé, Completely regular codes and completely transitive codes,, Discrete Math., 81 (1990), 193.
doi: 10.1016/0012-365X(90)90152-8. |
[31] |
A. Tietäväinen, On the non-existence of perfect codes over finite fields,, SIAM J. Appl. Math., 24 (1973), 88.
doi: 10.1137/0124010. |
[32] |
H. C. A. Van Tilborg, "Uniformly Packed Codes,", Ph.D thesis, (1976).
|
[33] |
V. A. Zinoviev and V. K. Leontiev, The nonexistence of perfect codes over Galois fields,, Problems Control Inform. Th., 2 (1973), 16. Google Scholar |
show all references
References:
[1] |
L. A. Bassalygo, G. V. Zaitsev and V. A. Zinoviev, Uniformly close-packed codes,, Problems Inform. Transmiss., 10 (1974), 9.
|
[2] |
L. A. Bassalygo and V. A. Zinoviev, A remark on uniformly packed codes,, Problems Inform. Transmiss., 13 (1977), 22.
|
[3] |
G. Bogdanova, V. A. Zinoviev and T. J. Todorov, On construction of $q$-ary equidistant codes,, Problems Inform. Transmiss., 43 (2007), 13.
doi: 10.1134/S0032946007040023. |
[4] |
A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes,, Ars Combin., 18 (1984), 181.
|
[5] |
J. Borges and J. Rifà, On the nonexistence of completely transitive codes,, IEEE Trans. Inform. Theory, 46 (2000), 279.
doi: 10.1109/18.817528. |
[6] |
J. Borges, J. Rifà and V. A. Zinoviev, Nonexistence of completely transitive codes with error-correcting capability $e > 3$,, IEEE Trans. Inform. Theory, 47 (2001), 1619.
doi: 10.1109/18.923747. |
[7] |
J. Borges, J. Rifà and V. A. Zinoviev, On non-antipodal binary completely regular codes,, Discrete Math., 308 (2008), 3508.
doi: 10.1016/j.disc.2007.07.008. |
[8] |
J. Borges, J. Rifà and V. A. Zinoviev, On linear completely regular codes with covering radius $\rho=1$,, preprint, (). Google Scholar |
[9] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, "Distance-Regular Graphs,", Springer-Verlag, (1989).
|
[10] |
K. A. Bush, Orthogonal arrays of index unity,, Ann. Math. Stat., 23 (1952), 426.
doi: 10.1214/aoms/1177729387. |
[11] |
A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97.
doi: 10.1112/blms/18.2.97. |
[12] |
C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs,", CRC Press, (1996).
doi: 10.1201/9781420049954. |
[13] |
G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,", Elsevier Science, (1997).
|
[14] |
P. Delsarte, Two-weight linear codes and strongly regular graphs,, MBLE Research Laboratory, (1971). Google Scholar |
[15] |
P. Delsarte, An algebraic approach to the association schemes of coding theory,, Philips Research Reports Supplements, 10 (1973).
|
[16] |
D. G. Fon-Der-Flaas, Perfect $2$-coloring of hypercube,, Siberian Math. J., 48 (2007), 923.
doi: 10.1007/s11202-007-0075-4. |
[17] |
D. G. Fon-Der-Flaas, Perfect $2$-coloring of the $12$-cube that attain the bound on correlation immunity,, Siberian Electronic Math. Reports, 4 (2007), 292.
|
[18] |
M. Giudici and C. E. Praeger, Completely transitive codes in Hamming graphs,, Europ. J. Combinatorics, 20 (1999), 647.
doi: 10.1006/eujc.1999.0313. |
[19] |
J. M. Goethals and H. C. A. Van Tilborg, Uniformly packed codes,, Philips Res., 30 (1975), 9.
|
[20] |
J. H. Koolen, W. S. Lee and W. J. Martin, Arithmetic completely regular codes,, preprint, (). Google Scholar |
[21] |
F. J. MacWilliams, A theorem on the distribution of weights in a systematic code,, Bell System Techn. J., 42 (1963), 79.
|
[22] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory if Error-Correcting Codes,", Elsevier, (1977).
|
[23] |
A. Neumaier, Completely regular codes,, Discrete Math., 106/107 (1992), 353.
doi: 10.1016/0012-365X(92)90565-W. |
[24] |
J. Rifà and V. A. Zinoviev, On new completely regular $q$-ary codes,, Problems Inform. Transmiss., 43 (2007), 97.
doi: 10.1134/S0032946007020032. |
[25] |
J. Rifà and V. A. Zinoviev, New completely regular $q$-ary codes, based on Kronecker products,, IEEE Trans. Inform. Theory, 56 (2010), 266.
doi: 10.1109/TIT.2009.2034812. |
[26] |
J. Rifà and V. A. Zinoviev, On lifting perfect codes,, preprint, (). Google Scholar |
[27] |
N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Class of maximal equidistant codes,, Problems Inform. Transmiss., 5 (1969), 84.
|
[28] |
N. V. Semakov, V. A. Zinoviev and G. V. Zaitsev, Uniformly close-packed codes,, Problems Inform. Transmiss., 7 (1971), 38.
|
[29] |
J. Singer, A theorem in finite projective geometry, and some applications to number theory,, Trans. Amer. Math. Soc., 43 (1938), 377.
|
[30] |
P. Solé, Completely regular codes and completely transitive codes,, Discrete Math., 81 (1990), 193.
doi: 10.1016/0012-365X(90)90152-8. |
[31] |
A. Tietäväinen, On the non-existence of perfect codes over finite fields,, SIAM J. Appl. Math., 24 (1973), 88.
doi: 10.1137/0124010. |
[32] |
H. C. A. Van Tilborg, "Uniformly Packed Codes,", Ph.D thesis, (1976).
|
[33] |
V. A. Zinoviev and V. K. Leontiev, The nonexistence of perfect codes over Galois fields,, Problems Control Inform. Th., 2 (1973), 16. Google Scholar |
[1] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[2] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[3] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[4] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[5] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[6] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
[7] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
[8] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[9] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[10] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[11] |
Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053 |
[12] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[13] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[14] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[15] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[16] |
Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020122 |
[17] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[18] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020127 |
[19] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[20] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]