November  2010, 4(4): 579-596. doi: 10.3934/amc.2010.4.579

On dual extremal maximal self-orthogonal codes of Type I-IV

1. 

Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, 52062 Aachen, Germany

Received  February 2010 Revised  September 2010 Published  November 2010

For a Type $T \in${I, II, III, IV} of codes over finite fields and length $N$ where there exists no self-dual Type $T$ code of length $N$, upper bounds on the minimum weight of the dual code of a self-orthogonal Type $T$ code of length $N$ are given, allowing the notion of dual extremal codes. It is proven that for $T \in${II, III, IV} the Hamming weight enumerator of a dual extremal maximal self-orthogonal Type $T$ code of a given length is unique.
Citation: Annika Meyer. On dual extremal maximal self-orthogonal codes of Type I-IV. Advances in Mathematics of Communications, 2010, 4 (4) : 579-596. doi: 10.3934/amc.2010.4.579
References:
[1]

C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory, 105 (2004), 15-34. doi: 10.1016/j.jcta.2003.09.003.  Google Scholar

[2]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333. doi: 10.1109/18.59931.  Google Scholar

[3]

P. Gaborit, A bound for certain s-extremal lattices and codes, Arch. Math. (Basel), 89 (2007), 143-151.  Google Scholar

[4]

A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identites, in "Actes, Congr. Int. Math.'' (ed. P. Gauthier-Villars), 3 (1971), 211-215.  Google Scholar

[5]

W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes," Cambridge University Press, Cambridge, 2003.  Google Scholar

[6]

G. Nebe, E. M. Rains and N. J. A. Sloane, "Self-Dual Codes and Invariant Theory," Springer, Berlin, 2006.  Google Scholar

[7]

M. Ozeki, On intersection properties of extremal ternary codes, J. Math. Industry, 1 (2009), 105-121.  Google Scholar

[8]

V. Pless, W. C. Huffman and R. A. Brualdi (eds.), "Handbook of Coding Theory," North-Holland, Amsterdam, 1998.  Google Scholar

[9]

V. Pless, N. J. A. Sloane and H. N. Ward, Ternary codes of minimum weight 6, and the classification of length 20, IEEE Trans. Inform. Theory, 26 (1980), 305-316. doi: 10.1109/TIT.1980.1056195.  Google Scholar

[10]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139. doi: 10.1109/18.651000.  Google Scholar

[11]

W. Scharlau, Quadratic and Hermitian forms, in "Grundlehren der Mathematischen Wissenschaften," Springer-Verlag, 1985.  Google Scholar

[12]

N. J. A. Sloane, Gleason's Theorem on self-dual codes and its generalizations,, preprint, ().   Google Scholar

show all references

References:
[1]

C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory, 105 (2004), 15-34. doi: 10.1016/j.jcta.2003.09.003.  Google Scholar

[2]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333. doi: 10.1109/18.59931.  Google Scholar

[3]

P. Gaborit, A bound for certain s-extremal lattices and codes, Arch. Math. (Basel), 89 (2007), 143-151.  Google Scholar

[4]

A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identites, in "Actes, Congr. Int. Math.'' (ed. P. Gauthier-Villars), 3 (1971), 211-215.  Google Scholar

[5]

W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes," Cambridge University Press, Cambridge, 2003.  Google Scholar

[6]

G. Nebe, E. M. Rains and N. J. A. Sloane, "Self-Dual Codes and Invariant Theory," Springer, Berlin, 2006.  Google Scholar

[7]

M. Ozeki, On intersection properties of extremal ternary codes, J. Math. Industry, 1 (2009), 105-121.  Google Scholar

[8]

V. Pless, W. C. Huffman and R. A. Brualdi (eds.), "Handbook of Coding Theory," North-Holland, Amsterdam, 1998.  Google Scholar

[9]

V. Pless, N. J. A. Sloane and H. N. Ward, Ternary codes of minimum weight 6, and the classification of length 20, IEEE Trans. Inform. Theory, 26 (1980), 305-316. doi: 10.1109/TIT.1980.1056195.  Google Scholar

[10]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139. doi: 10.1109/18.651000.  Google Scholar

[11]

W. Scharlau, Quadratic and Hermitian forms, in "Grundlehren der Mathematischen Wissenschaften," Springer-Verlag, 1985.  Google Scholar

[12]

N. J. A. Sloane, Gleason's Theorem on self-dual codes and its generalizations,, preprint, ().   Google Scholar

[1]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[2]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[3]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[4]

Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

[5]

Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499

[6]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[7]

María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018

[8]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[9]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[10]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[11]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[12]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[13]

Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018

[14]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[15]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[16]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[17]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[18]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[19]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[20]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]