February  2011, 5(1): 1-10. doi: 10.3934/amc.2011.5.1

Point compression for Koblitz elliptic curves

1. 

Information Security Group, Mathematics Department, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom

2. 

Mathematics Department, The University of Auckland, Private Bag 92019 Auckland 1142, New Zealand, New Zealand

Received  February 2009 Revised  September 2010 Published  February 2011

Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is an elliptic curve $E$ over $\mathbb F$2; the group $E(\mathbb F$2n$)$ has convenient features for efficient implementation of elliptic curve cryptography.
   Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard rho algorithm for the discrete logarithm problem on Koblitz curves. This implies that when using Koblitz curves, one has a lower security per bit than when using general elliptic curves defined over the same field. Hence for a fixed security level, systems using Koblitz curves require slightly more bandwidth.
   We present a method to reduce this bandwidth when a normal basis representation for $\mathbb F$2n is used. Our method is appropriate for applications such as Diffie-Hellman key exchange or Elgamal encryption. We show that, with a low probability of failure, our method gives the expected bandwidth for a given security level.
Citation: Philip N. J. Eagle, Steven D. Galbraith, John B. Ong. Point compression for Koblitz elliptic curves. Advances in Mathematics of Communications, 2011, 5 (1) : 1-10. doi: 10.3934/amc.2011.5.1
References:
[1]

I. F. Blake, G. Seroussi and N. P. Smart, "Elliptic Curves in Cryptography,'', Cambridge, (1999). Google Scholar

[2]

R. P. Gallant, R. Lambert and S. A. Vanstone, Improving the parallelized pollard Lambda search on binary anomalous curves,, Math. Comput., 69 (2000), 1699. doi: 10.1090/S0025-5718-99-01119-9. Google Scholar

[3]

P. Gaudry, F. Hess and N. Smart, Constructive and destructive facets of Weil descent on elliptic curves,, J. Cryptology, 15 (2002), 19. doi: 10.1007/s00145-001-0011-x. Google Scholar

[4]

B. King, A point compression method for elliptic curves defined over $GF(2^n)$,, in, (2004), 333. Google Scholar

[5]

N. Koblitz, CM-curves with good cryptographic properties,, in, (1992), 279. Google Scholar

[6]

R. Lidl and H. Niederreiter, "Introduction to Finite Fields and their Applications,'', Cambridge, (1994). Google Scholar

[7]

V. S. Miller, Use of elliptic curves in cryptography,, in, (1986), 417. Google Scholar

[8]

J. Pollard, Monte Carlo methods for index computation mod p,, Math. Comput., 32 (1978), 918. Google Scholar

[9]

M. F. Schilling, The longest run of heads,, College Math. J., 21 (1990), 196. doi: 10.2307/2686886. Google Scholar

[10]

G. Seroussi, Compact representation of elliptic curve points over $\mathbb F_{2^n}$,, HP Labs Tech. Report HPL-98-94R1, (1998), 98. Google Scholar

[11]

J. A. Solinas, Efficient arithmetic on Koblitz curves,, Des. Codes Crypt., 19 (2000), 195. doi: 10.1023/A:1008306223194. Google Scholar

[12]

P. C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic applications,, J. Crypt., 12 (1999), 1. doi: 10.1007/PL00003816. Google Scholar

[13]

M. J. Wiener and R. J. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems,, in, (1999), 190. Google Scholar

show all references

References:
[1]

I. F. Blake, G. Seroussi and N. P. Smart, "Elliptic Curves in Cryptography,'', Cambridge, (1999). Google Scholar

[2]

R. P. Gallant, R. Lambert and S. A. Vanstone, Improving the parallelized pollard Lambda search on binary anomalous curves,, Math. Comput., 69 (2000), 1699. doi: 10.1090/S0025-5718-99-01119-9. Google Scholar

[3]

P. Gaudry, F. Hess and N. Smart, Constructive and destructive facets of Weil descent on elliptic curves,, J. Cryptology, 15 (2002), 19. doi: 10.1007/s00145-001-0011-x. Google Scholar

[4]

B. King, A point compression method for elliptic curves defined over $GF(2^n)$,, in, (2004), 333. Google Scholar

[5]

N. Koblitz, CM-curves with good cryptographic properties,, in, (1992), 279. Google Scholar

[6]

R. Lidl and H. Niederreiter, "Introduction to Finite Fields and their Applications,'', Cambridge, (1994). Google Scholar

[7]

V. S. Miller, Use of elliptic curves in cryptography,, in, (1986), 417. Google Scholar

[8]

J. Pollard, Monte Carlo methods for index computation mod p,, Math. Comput., 32 (1978), 918. Google Scholar

[9]

M. F. Schilling, The longest run of heads,, College Math. J., 21 (1990), 196. doi: 10.2307/2686886. Google Scholar

[10]

G. Seroussi, Compact representation of elliptic curve points over $\mathbb F_{2^n}$,, HP Labs Tech. Report HPL-98-94R1, (1998), 98. Google Scholar

[11]

J. A. Solinas, Efficient arithmetic on Koblitz curves,, Des. Codes Crypt., 19 (2000), 195. doi: 10.1023/A:1008306223194. Google Scholar

[12]

P. C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic applications,, J. Crypt., 12 (1999), 1. doi: 10.1007/PL00003816. Google Scholar

[13]

M. J. Wiener and R. J. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems,, in, (1999), 190. Google Scholar

[1]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

[2]

Koray Karabina, Berkant Ustaoglu. Invalid-curve attacks on (hyper)elliptic curve cryptosystems. Advances in Mathematics of Communications, 2010, 4 (3) : 307-321. doi: 10.3934/amc.2010.4.307

[3]

Alice Silverberg. Some remarks on primality proving and elliptic curves. Advances in Mathematics of Communications, 2014, 8 (4) : 427-436. doi: 10.3934/amc.2014.8.427

[4]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[5]

Steven D. Galbraith, Ping Wang, Fangguo Zhang. Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm. Advances in Mathematics of Communications, 2017, 11 (3) : 453-469. doi: 10.3934/amc.2017038

[6]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[7]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[8]

Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59.

[9]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[10]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[11]

Rafail Krichevskii and Vladimir Potapov. Compression and restoration of square integrable functions. Electronic Research Announcements, 1996, 2: 42-49.

[12]

Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1061-1083. doi: 10.3934/mbe.2011.8.1061

[13]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[14]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[15]

Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249

[16]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[17]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[18]

Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012

[19]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[20]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

[Back to Top]