February  2011, 5(1): 11-21. doi: 10.3934/amc.2011.5.11

The dual construction for arcs in projective Hjelmslev spaces

1. 

Zhejiang Provincial Key Laboratory of Information Network Technology, and Department of Information and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China

2. 

New Bulgarian University, 18 Montevideo str., Sofia 1618, Bulgaria, and Institute of Mathematics and Informatics, 8 Acad. G. Bonchev str., Sofia 1113, Bulgaria

Received  February 2010 Revised  September 2010 Published  February 2011

In this paper, we present a duality construction for multiarcs in projective Hjelmslev geometries over chain rings of nilpotency index 2. We compute the parameters of the resulting arcs and discuss some examples.
Citation: Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11
References:
[1]

A. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes,, Des. Codes Crypt., 11 (1997), 262.  doi: 10.1023/A:1008294128110.  Google Scholar

[2]

E. Byrne, M. Greferath and T. Honold, Ring geometries, two-weight codes and strongly regular graphs,, Des. Codes Crypt., 48 (2008), 1.  doi: 10.1007/s10623-007-9136-8.  Google Scholar

[3]

A. Cronheim, Dual numbers, Witt vectors, and Hjelmslev planes,, Geom. Dedicata, 7 (1978), 287.  doi: 10.1007/BF00151527.  Google Scholar

[4]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[5]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' $2^{nd}$ edition,, Oxford University Press, (1998).   Google Scholar

[6]

T. Honold, M. Kiermaier and I. Landjev, New arcs of maximal size in projective Hjelmslev planes of order nine,, Comptes Rendus l'Acad. Bulgare Sci., 63 (2010), 171.   Google Scholar

[7]

T. Honold and I. Landjev, Projective Hjelmslev geometries,, in, (1998), 97.   Google Scholar

[8]

T. Honold and I. Landjev, Linearly representable codes over chain rings,, Abhandlungen math. Seminar Univ. Hamburg, 69 (1999), 187.  doi: 10.1007/BF02940872.  Google Scholar

[9]

T. Honold and I. Landjev, Linear codes over finite chain rings,, Electr. J. Combin., 7 (2000).   Google Scholar

[10]

T. Honold and I. Landjev, On arcs in projective Hjelmslev planes,, Discrete Math., 231 (2001), 265.  doi: 10.1016/S0012-365X(00)00323-X.  Google Scholar

[11]

T. Honold and I. Landjev, On maximal arcs in projective Hjelmslev planes,, Finite Fields Appl., 11 (2005), 292.  doi: 10.1016/j.ffa.2004.12.004.  Google Scholar

[12]

M. Kiermaier and A. Kohnert, New arcs in projective Hjelmslev planes over Galois rings,, in, (2007), 112.   Google Scholar

[13]

A. Kreuzer, Fundamental theorem of projective Hjelmslev spaces,, Mitteilungen Math. Gesellschaft Hamburg, 12 (1991), 809.   Google Scholar

[14]

I. Landjev and T. Honold, Arcs in projective Hjelmslev planes,, Discrete Math. Appl., 11 (2001), 53.  doi: 10.1515/dma.2001.11.1.53.  Google Scholar

[15]

A. A. Nechaev, Finite principal ideal rings,, Sbornik. Math., 20 (1973), 364.  doi: 10.1070/SM1973v020n03ABEH001880.  Google Scholar

[16]

R. Raghavendran, Finite associative rings,, Compositio Math., 21 (1969), 195.   Google Scholar

show all references

References:
[1]

A. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes,, Des. Codes Crypt., 11 (1997), 262.  doi: 10.1023/A:1008294128110.  Google Scholar

[2]

E. Byrne, M. Greferath and T. Honold, Ring geometries, two-weight codes and strongly regular graphs,, Des. Codes Crypt., 48 (2008), 1.  doi: 10.1007/s10623-007-9136-8.  Google Scholar

[3]

A. Cronheim, Dual numbers, Witt vectors, and Hjelmslev planes,, Geom. Dedicata, 7 (1978), 287.  doi: 10.1007/BF00151527.  Google Scholar

[4]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[5]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' $2^{nd}$ edition,, Oxford University Press, (1998).   Google Scholar

[6]

T. Honold, M. Kiermaier and I. Landjev, New arcs of maximal size in projective Hjelmslev planes of order nine,, Comptes Rendus l'Acad. Bulgare Sci., 63 (2010), 171.   Google Scholar

[7]

T. Honold and I. Landjev, Projective Hjelmslev geometries,, in, (1998), 97.   Google Scholar

[8]

T. Honold and I. Landjev, Linearly representable codes over chain rings,, Abhandlungen math. Seminar Univ. Hamburg, 69 (1999), 187.  doi: 10.1007/BF02940872.  Google Scholar

[9]

T. Honold and I. Landjev, Linear codes over finite chain rings,, Electr. J. Combin., 7 (2000).   Google Scholar

[10]

T. Honold and I. Landjev, On arcs in projective Hjelmslev planes,, Discrete Math., 231 (2001), 265.  doi: 10.1016/S0012-365X(00)00323-X.  Google Scholar

[11]

T. Honold and I. Landjev, On maximal arcs in projective Hjelmslev planes,, Finite Fields Appl., 11 (2005), 292.  doi: 10.1016/j.ffa.2004.12.004.  Google Scholar

[12]

M. Kiermaier and A. Kohnert, New arcs in projective Hjelmslev planes over Galois rings,, in, (2007), 112.   Google Scholar

[13]

A. Kreuzer, Fundamental theorem of projective Hjelmslev spaces,, Mitteilungen Math. Gesellschaft Hamburg, 12 (1991), 809.   Google Scholar

[14]

I. Landjev and T. Honold, Arcs in projective Hjelmslev planes,, Discrete Math. Appl., 11 (2001), 53.  doi: 10.1515/dma.2001.11.1.53.  Google Scholar

[15]

A. A. Nechaev, Finite principal ideal rings,, Sbornik. Math., 20 (1973), 364.  doi: 10.1070/SM1973v020n03ABEH001880.  Google Scholar

[16]

R. Raghavendran, Finite associative rings,, Compositio Math., 21 (1969), 195.   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[6]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[7]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[10]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[11]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[12]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]