May  2011, 5(2): 199-208. doi: 10.3934/amc.2011.5.199

Symmetric designs possessing tactical decompositions

1. 

University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, Unska 3, 10000 Zagreb, Croatia, Croatia

Received  April 2010 Revised  October 2010 Published  May 2011

The main aim of this paper is to construct symmetric designs with trivial automorphism groups. Being aware of the fact that an exhaustive search for parameters $(36,15,6)$ and $(41,16,6)$ is still impossible, we assume that these designs admit a tactical decomposition which would correspond to an orbit structure achieved under an action of an automorphism of order $3$. This constraint proves to be fruitful and allows us to classify simultaneously those symmetric designs with mentioned parameters which admit an automorphism of order $3$ as well as to construct new designs with a trivial automorphism group.
Citation: Ivica Martinjak, Mario-Osvin Pavčević. Symmetric designs possessing tactical decompositions. Advances in Mathematics of Communications, 2011, 5 (2) : 199-208. doi: 10.3934/amc.2011.5.199
References:
[1]

W. O. Alltop, An infinite class of $5$-designs, J. Combin. Theory Ser. A, 12 (1972), 390-395. doi: 10.1016/0097-3165(72)90104-5.

[2]

I. Bouyukliev, V. Fack and J. Winne, $2$-$(31,15,7)$, $2$-$(35,17,8)$ and $2$-$(36,15,6)$ designs with automorphisms of odd prime order, and their related Hadamard matrices and codes, Des. Codes Crypt., 51 (2009), 105-122. doi: 10.1007/s10623-008-9247-x.

[3]

D. Crnković and D. Held, Some Menon designs having $U(3,3)$ as an automorphism group, Illinois J. Math., 47 (2003), 129-139.

[4]

V. Ćepulić, On symmetric block designs $(40,13,4)$ with automorphisms of order $5$, Discrete Math., 128 (1994), 45-60. doi: 10.1016/0012-365X(94)90103-1.

[5]

D. Held, J. Hrabe de Angelis and M.-O. Pavčević, $PSp_4(3)$ as a symmetric $(36,15,6)$ design, Rend. Sem. Mat. Univ. Padova, 101 (1999), 95-98.

[6]

D. Held and M.-O. Pavčević, Symmetric $(79,27,9)$ design admitting a faithful action of a Frobenius group of order $39$, Europ. J. Combinatorics, 18 (1997), 409-416. doi: 10.1006/eujc.1996.0103.

[7]

Y. J. Ionin and T. van Trung, Symmetric designs, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 110-124.

[8]

Z. Janko and T. van Trung, Construction of a new symmetric block design for $(78,22,6)$ with the help of tactical decompositions, J. Combin. Theory Ser. A, 40 (1985), 451-455. doi: 10.1016/0097-3165(85)90107-4.

[9]

P. Kaski and P. R. J. Östergärd, "Classification Algorithms for Codes and Designs,'' Springer, Berlin, 2006.

[10]

V. Krčadinac, Steiner $2$-designs $S(2,5,41)$ with automorphisms of order $3$, J. Combin. Math. Combin. Comput., 43 (2002), 83-99.

[11]

E. Lander, "Symmetric Designs: An Algebraic Approach,'' Cambridge University Press, Cambridge, 1983. doi: 10.1017/CBO9780511662164.

[12]

R. Mathon and A. Rosa, $2$-$(v,k,\lambda)$ designs of small order, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 25-58.

[13]

B. D. McKay, Nauty user's guide (version 1.5), Technical Report TR-CS-90-02, Dep. Computer Science, Australian National University, 1990.

show all references

References:
[1]

W. O. Alltop, An infinite class of $5$-designs, J. Combin. Theory Ser. A, 12 (1972), 390-395. doi: 10.1016/0097-3165(72)90104-5.

[2]

I. Bouyukliev, V. Fack and J. Winne, $2$-$(31,15,7)$, $2$-$(35,17,8)$ and $2$-$(36,15,6)$ designs with automorphisms of odd prime order, and their related Hadamard matrices and codes, Des. Codes Crypt., 51 (2009), 105-122. doi: 10.1007/s10623-008-9247-x.

[3]

D. Crnković and D. Held, Some Menon designs having $U(3,3)$ as an automorphism group, Illinois J. Math., 47 (2003), 129-139.

[4]

V. Ćepulić, On symmetric block designs $(40,13,4)$ with automorphisms of order $5$, Discrete Math., 128 (1994), 45-60. doi: 10.1016/0012-365X(94)90103-1.

[5]

D. Held, J. Hrabe de Angelis and M.-O. Pavčević, $PSp_4(3)$ as a symmetric $(36,15,6)$ design, Rend. Sem. Mat. Univ. Padova, 101 (1999), 95-98.

[6]

D. Held and M.-O. Pavčević, Symmetric $(79,27,9)$ design admitting a faithful action of a Frobenius group of order $39$, Europ. J. Combinatorics, 18 (1997), 409-416. doi: 10.1006/eujc.1996.0103.

[7]

Y. J. Ionin and T. van Trung, Symmetric designs, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 110-124.

[8]

Z. Janko and T. van Trung, Construction of a new symmetric block design for $(78,22,6)$ with the help of tactical decompositions, J. Combin. Theory Ser. A, 40 (1985), 451-455. doi: 10.1016/0097-3165(85)90107-4.

[9]

P. Kaski and P. R. J. Östergärd, "Classification Algorithms for Codes and Designs,'' Springer, Berlin, 2006.

[10]

V. Krčadinac, Steiner $2$-designs $S(2,5,41)$ with automorphisms of order $3$, J. Combin. Math. Combin. Comput., 43 (2002), 83-99.

[11]

E. Lander, "Symmetric Designs: An Algebraic Approach,'' Cambridge University Press, Cambridge, 1983. doi: 10.1017/CBO9780511662164.

[12]

R. Mathon and A. Rosa, $2$-$(v,k,\lambda)$ designs of small order, in "CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 25-58.

[13]

B. D. McKay, Nauty user's guide (version 1.5), Technical Report TR-CS-90-02, Dep. Computer Science, Australian National University, 1990.

[1]

Justyna Jarczyk, Witold Jarczyk. Gaussian iterative algorithm and integrated automorphism equation for random means. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6837-6844. doi: 10.3934/dcds.2020135

[2]

Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Communications on Pure and Applied Analysis, 2009, 8 (1) : 295-309. doi: 10.3934/cpaa.2009.8.295

[3]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial and Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[4]

Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055

[5]

Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial and Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777

[6]

Chunfeng Liu, Yuanyuan Liu, Jufeng Wang. A revised imperialist competition algorithm for cellular manufacturing optimization based on product line design. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021175

[7]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[8]

Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601

[9]

Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial and Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891

[10]

Arvind Ayyer, Carlangelo Liverani, Mikko Stenlund. Quenched CLT for random toral automorphism. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 331-348. doi: 10.3934/dcds.2009.24.331

[11]

Xiao-Hong Liu, Wei-Zhe Gu. Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones. Journal of Industrial and Management Optimization, 2010, 6 (2) : 363-380. doi: 10.3934/jimo.2010.6.363

[12]

Esa Järvenpää, Maarit Järvenpää, R. Daniel Mauldin. Deterministic and random aspects of porosities. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 121-136. doi: 10.3934/dcds.2002.8.121

[13]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[14]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[15]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[16]

Heide Gluesing-Luerssen, Hunter Lehmann. Automorphism groups and isometries for cyclic orbit codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021040

[17]

Paweł Góra, Abraham Boyarsky, Zhenyang LI, Harald Proppe. Statistical and deterministic dynamics of maps with memory. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4347-4378. doi: 10.3934/dcds.2017186

[18]

Leonid A. Bunimovich, Alex Yurchenko. Deterministic walks in rigid environments with aging. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 37-46. doi: 10.3934/dcdsb.2008.9.37

[19]

Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.

[20]

Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505-522. doi: 10.3934/mbe.2008.5.505

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]