May  2011, 5(2): 209-223. doi: 10.3934/amc.2011.5.209

The classification of $(42,6)_8$ arcs

1. 

Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States

2. 

Department of Mathematics and RINS, Gyeongsang National University, Jinju, 660-701, South Korea, South Korea

3. 

Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531

Received  April 2010 Revised  October 2010 Published  May 2011

It is known that $42$ is the largest size of a $6$-arc in the Desarguesian projective plane of order $8$. In this paper, we classify these $(42,6)_8$ arcs. Equivalently, we classify the smallest $3$-fold blocking sets in PG$(2,8)$, which have size $31$.
Citation: Anton Betten, Eun Ju Cheon, Seon Jeong Kim, Tatsuya Maruta. The classification of $(42,6)_8$ arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 209-223. doi: 10.3934/amc.2011.5.209
References:
[1]

S. Ball, Multiple blocking sets and arcs in finite planes,, J. London Math. Soc. (2), 54 (1996), 581. Google Scholar

[2]

A. Betten and D. Betten, There is no Drake/Larson linear space on $30$ points,, J. Combin. Des., 18 (2010), 48. Google Scholar

[3]

A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes,, IEEE Trans. Inform. Theory, 36 (1990), 1334. doi: 10.1109/18.59932. Google Scholar

[4]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition,, The Clarendon Press, (1998). Google Scholar

[5]

S. M. Johnson, A new upper bound for error-correcting codes,, IRE Trans., IT-8 (1962), 203. Google Scholar

[6]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes. II,'', North-Holland Publishing Co., (1977). Google Scholar

[7]

J. R. M. Mason, A class of $((p^n-p^m)(p^n-1),p^n-p^m)$-arcs in PG$(2,p^n)$,, Geom. Dedicata, 15 (1984), 355. Google Scholar

show all references

References:
[1]

S. Ball, Multiple blocking sets and arcs in finite planes,, J. London Math. Soc. (2), 54 (1996), 581. Google Scholar

[2]

A. Betten and D. Betten, There is no Drake/Larson linear space on $30$ points,, J. Combin. Des., 18 (2010), 48. Google Scholar

[3]

A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes,, IEEE Trans. Inform. Theory, 36 (1990), 1334. doi: 10.1109/18.59932. Google Scholar

[4]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition,, The Clarendon Press, (1998). Google Scholar

[5]

S. M. Johnson, A new upper bound for error-correcting codes,, IRE Trans., IT-8 (1962), 203. Google Scholar

[6]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes. II,'', North-Holland Publishing Co., (1977). Google Scholar

[7]

J. R. M. Mason, A class of $((p^n-p^m)(p^n-1),p^n-p^m)$-arcs in PG$(2,p^n)$,, Geom. Dedicata, 15 (1984), 355. Google Scholar

[1]

Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65

[2]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[3]

Víctor Jiménez López, Gabriel Soler López. A topological characterization of ω-limit sets for continuous flows on the projective plane. Conference Publications, 2001, 2001 (Special) : 254-258. doi: 10.3934/proc.2001.2001.254

[4]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

[5]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[6]

Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015

[7]

Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39

[8]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[9]

Jungkai A. Chen and Meng Chen. On projective threefolds of general type. Electronic Research Announcements, 2007, 14: 69-73. doi: 10.3934/era.2007.14.69

[10]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[11]

Roland Hildebrand. Barriers on projective convex sets. Conference Publications, 2011, 2011 (Special) : 672-683. doi: 10.3934/proc.2011.2011.672

[12]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[13]

J. C. Alvarez Paiva and E. Fernandes. Crofton formulas in projective Finsler spaces. Electronic Research Announcements, 1998, 4: 91-100.

[14]

Mickaël Crampon. Entropies of strictly convex projective manifolds. Journal of Modern Dynamics, 2009, 3 (4) : 511-547. doi: 10.3934/jmd.2009.3.511

[15]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[16]

Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11

[17]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[18]

Carlos Durán, Diego Otero. The projective Cartan-Klein geometry of the Helmholtz conditions. Journal of Geometric Mechanics, 2018, 10 (1) : 69-92. doi: 10.3934/jgm.2018003

[19]

Linda Beukemann, Klaus Metsch, Leo Storme. On weighted minihypers in finite projective spaces of square order. Advances in Mathematics of Communications, 2015, 9 (3) : 291-309. doi: 10.3934/amc.2015.9.291

[20]

Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 27-47. doi: 10.3934/jgm.2012.4.27

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]