Advanced Search
Article Contents
Article Contents

The classification of $(42,6)_8$ arcs

Abstract Related Papers Cited by
  • It is known that $42$ is the largest size of a $6$-arc in the Desarguesian projective plane of order $8$. In this paper, we classify these $(42,6)_8$ arcs. Equivalently, we classify the smallest $3$-fold blocking sets in PG$(2,8)$, which have size $31$.
    Mathematics Subject Classification: Primary: 51E21; Secondary: 05E18.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc. (2), 54 (1996), 581-593.


    A. Betten and D. Betten, There is no Drake/Larson linear space on $30$ points, J. Combin. Des., 18 (2010), 48-70.


    A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory, 36 (1990), 1334-1380.doi: 10.1109/18.59932.


    J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition, The Clarendon Press, Oxford University Press, New York, 1998.


    S. M. Johnson, A new upper bound for error-correcting codes, IRE Trans., IT-8 (1962), 203-207.


    F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes. II,'' North-Holland Publishing Co., Amsterdam, 1977.


    J. R. M. Mason, A class of $((p^n-p^m)(p^n-1),p^n-p^m)$-arcs in PG$(2,p^n)$, Geom. Dedicata, 15 (1984), 355-361.

  • 加载中

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint