May  2011, 5(2): 267-274. doi: 10.3934/amc.2011.5.267

On the performance of binary extremal self-dual codes

1. 

Department of Mathematics and Informatics, Veliko Tarnovo University, 5000 Veliko Tarnovo, Bulgaria

2. 

Department of Mathematics, Otto-von-Guericke-University, 39016 Magdeburg, Germany, Germany

Received  April 2010 Revised  July 2010 Published  May 2011

The decoding error probability of a code $C$ measures the quality of performance when $C$ is used for error correction in data transmission. In this note we compare different types of codes with regard to the decoding error probability.
Citation: Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267
References:
[1]

C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows,, J. Combin. Theory A, 105 (2004), 15.  doi: 10.1016/j.jcta.2003.09.003.  Google Scholar

[2]

S. Bouyuklieva and V. Yorgov, Singly-even codes of length 40,, Des. Codes Crypt., 9 (1996), 131.  doi: 10.1007/BF00124589.  Google Scholar

[3]

Y. Cheng and N. J. A. Sloane, Codes from symmetry groups, and a $[32,17,8]$ code,, SIAM J. Discrete Math., 2 (1989), 28.  doi: 10.1137/0402003.  Google Scholar

[4]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319.  doi: 10.1109/18.59931.  Google Scholar

[5]

R. Doncheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7,, Appl. Algebra Eng. Comm. Comp., 14 (2003), 75.  doi: 10.1007/s00200-003-0126-4.  Google Scholar

[6]

A. Faldum, J. Lafuente, G. Ochoa and W. Willems, Error probabilities for bounded distance decoding,, Des. Codes Crypt., 40 (2006), 237.  doi: 10.1007/s10623-006-0010-x.  Google Scholar

[7]

A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities,, Actes Congrès Internat. Math., 3 (1970), 211.   Google Scholar

[8]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North Holland, (1977).   Google Scholar

[9]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes,, Inform. Control, 22 (1973), 188.  doi: 10.1016/S0019-9958(73)90273-8.  Google Scholar

[10]

E. M. Rains, Shadow bounds for self-dual-codes,, IEEE Trans. Inform. Theory, 44 (1998), 134.  doi: 10.1109/18.651000.  Google Scholar

[11]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[12]

V. Yorgov, On the minimal weight of some singly-even codes,, IEEE Trans. Inform. Theory, 45 (1999), 2539.  doi: 10.1109/18.796401.  Google Scholar

[13]

S. Zhang, On the nonexistence of extremal self-dual codes,, Discrete Appl. Math., 91 (1999), 277.  doi: 10.1016/S0166-218X(98)00131-0.  Google Scholar

show all references

References:
[1]

C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows,, J. Combin. Theory A, 105 (2004), 15.  doi: 10.1016/j.jcta.2003.09.003.  Google Scholar

[2]

S. Bouyuklieva and V. Yorgov, Singly-even codes of length 40,, Des. Codes Crypt., 9 (1996), 131.  doi: 10.1007/BF00124589.  Google Scholar

[3]

Y. Cheng and N. J. A. Sloane, Codes from symmetry groups, and a $[32,17,8]$ code,, SIAM J. Discrete Math., 2 (1989), 28.  doi: 10.1137/0402003.  Google Scholar

[4]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319.  doi: 10.1109/18.59931.  Google Scholar

[5]

R. Doncheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7,, Appl. Algebra Eng. Comm. Comp., 14 (2003), 75.  doi: 10.1007/s00200-003-0126-4.  Google Scholar

[6]

A. Faldum, J. Lafuente, G. Ochoa and W. Willems, Error probabilities for bounded distance decoding,, Des. Codes Crypt., 40 (2006), 237.  doi: 10.1007/s10623-006-0010-x.  Google Scholar

[7]

A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities,, Actes Congrès Internat. Math., 3 (1970), 211.   Google Scholar

[8]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North Holland, (1977).   Google Scholar

[9]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes,, Inform. Control, 22 (1973), 188.  doi: 10.1016/S0019-9958(73)90273-8.  Google Scholar

[10]

E. M. Rains, Shadow bounds for self-dual-codes,, IEEE Trans. Inform. Theory, 44 (1998), 134.  doi: 10.1109/18.651000.  Google Scholar

[11]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[12]

V. Yorgov, On the minimal weight of some singly-even codes,, IEEE Trans. Inform. Theory, 45 (1999), 2539.  doi: 10.1109/18.796401.  Google Scholar

[13]

S. Zhang, On the nonexistence of extremal self-dual codes,, Discrete Appl. Math., 91 (1999), 277.  doi: 10.1016/S0166-218X(98)00131-0.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[5]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[6]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

[Back to Top]