\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the non-existence of sharply transitive sets of permutations in certain finite permutation groups

Abstract Related Papers Cited by
  • In this short note we present a simple combinatorial trick which can be effectively applied to show the non-existence of sharply transitive sets of permutations in certain finite permutation groups.
    Mathematics Subject Classification: Primary: 20B20, 05B05; Secondary: 51E15, 20N05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.doi: 10.1006/jsco.1996.0125.

    [2]

    A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, in "Ergebnisse der Mathematik und ihrer Grenzgebiete,'' Springer-Verlag, Berlin, 1989.

    [3]

    P. Dembowski, "Finite Geometries,'' Springer-Verlag, Berlin-New York, 1968.

    [4]

    P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A, 22 (1977), 352-360.doi: 10.1016/0097-3165(77)90009-7.

    [5]

    GAP Group, "GAP - Groups, Algorithms, and Programming,'' University of St Andrews and RWTH Aachen, 2002, Version 4r3.

    [6]

    T. Grundhöfer, The groups of projectivities of finite projective and affine planes, in "Eleventh British Combinatorial Conference (London, 1987),'' Ars Combin., 25 (1988), 269-275.

    [7]

    T. Grundhöfer and P. Müller, Sharply 2-transitive sets of permutations and groups of affine projectivities, Beiträge Algebra Geom., 50 (2009), 143-154.

    [8]

    M. E. O'Nan, Sharply 2-transitive sets of permutations, in "Proc. Rutgers Group Theory Year, 1983-1984 (New Brunswick, N.J., 1983-1984),'' Cambridge Univ. Press, (1985), 63-67.

    [9]

    J. Quistorff, A survey on packing and covering problems in the Hamming permutation space, Electron. J. Combin., 13 (2006), 13.

    [10]

    H. Tarnanen, Upper bounds on permutation codes via linear programming, Europ. J. Combinatorics, 20 (1999), 101-114.doi: 10.1006/eujc.1998.0272.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(135) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return