-
Previous Article
Characterization of some optimal arcs
- AMC Home
- This Issue
-
Next Article
On the non-existence of sharply transitive sets of permutations in certain finite permutation groups
On quaternary complex Hadamard matrices of small orders
1. | Department of Mathematics and its Applications, Central European University, H-1051, Nádor u. 9, Budapest, Hungary |
References:
[1] |
G. Auberson, A. Martin and G. Mennessier, On the reconstruction of a unitary matrix from its moduli, Commun. Math. Phys., 140 (1991), 417-436.
doi: 10.1007/BF02099133. |
[2] |
S. Bouguezel, M. O. Ahmed and M. N. S. Swami, A new class of reciprocal-orthogonal parametric transforms, IEEE Trans. Circuits Syst. I, 56 (2009), 795-805.
doi: 10.1109/TCSI.2008.2002923. |
[3] |
A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc., 13 (1962), 894-898.
doi: 10.1090/S0002-9939-1962-0142557-0. |
[4] |
R. Craigen, Equivalence classes of inverse orthogonal and unit Hadamard matrices, Bull. Austral. Math. Soc., 44 (1991), 109-115.
doi: 10.1017/S0004972700029506. |
[5] |
P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A, 20 (2004), 5355-5374. |
[6] |
P. Diţă, Complex Hadamard matrices from Sylvester inverse orthogonal matrices, Open Sys. Inform. Dyn., 16 (2009), 387-405; see the errata at arXiv:0901.0982v2 |
[7] |
P. Diţă, Hadamard Matrices from mutually unbiased bases, J. Math. Phys., 51 (2010), 20. |
[8] |
T. Durt, B.-H. Englert, I. Bengtsson and K. Życzkowski, On mutually unbiased bases, Intern. J. Quantum Inform., 8 (2010), 535-640.
doi: 10.1142/S0219749910006502. |
[9] |
U. Haagerup, Orthogonal maximal Abelian *-subalgebras of $n\times n$ matrices and cyclic $n$-roots, in "Operator Algebras and Quantum Field Theory (Rome),'' MA International Press, (1996), 296-322. |
[10] |
M. Harada, C. Lam and V. D. Tonchev, Symmetric $(4,4)$-nets and generalized Hadamard matrices over groups of order $4$, Des. Codes Crypt., 34 (2005), 71-87.
doi: 10.1007/s10623-003-4195-y. |
[11] |
K. J. Horadam, "Hadamard Matrices and Their Applications,'' Princeton University Press, Princeton, 2007. |
[12] |
M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collectanea Math., Extra (2006), 281-291. |
[13] |
M. H. Lee and V. V. Vavrek, Jacket conference matrices and Paley transformation, in "Eleventh International Wokshop on Algebraic and Combinatorial Coding Theory,'' Pamporovo, Bulgaria, (2008), 181-185. |
[14] |
M. Matolcsi, J. Réffy and F. Szöllősi, Constructions of complex Hadamard matrices via tiling abelian groups, Open Sys. Inform. Dyn., 14 (2007), 247-263.
doi: 10.1007/s11080-007-9050-6. |
[15] |
T. S. Michael and W. D. Wallis, Skew-Hadamard matrices and the Smith normal form, Des. Codes Crypt., 13 (1998), 173-176.
doi: 10.1023/A:1008230429804. |
[16] |
S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory, 9 (1983), 253-268. |
[17] |
F. Szöllősi, Parametrizing complex Hadamard matrices, European J. Combin., 29 (2008), 1219-1234.
doi: 10.1016/j.ejc.2007.06.009. |
[18] |
F. Szöllősi, Exotic complex Hadamard matrices and their equivalence, Crypt. Commun., 2 (2010), 187-198.
doi: 10.1007/s12095-010-0021-3. |
[19] |
W. Tadej and K. Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inform. Dyn., 13 (2006), 133-177.
doi: 10.1007/s11080-006-8220-2. |
[20] |
T. Tao, Fuglede's conjecture is false in $5$ and higher dimensions, Math Res. Letters, 11 (2004), 251-258. |
[21] |
R. F. Werner, All teleportation and dense coding schemes, J. Phys. A, 34 (2001), 7081-7094.
doi: 10.1088/0305-4470/34/35/332. |
[22] |
G. Zauner, "Quantendesigns: Grundzäuge einer nichtkommutativen Designtheorie'' (in German), Ph.D thesis, Universität Wien, 1999; available online at http://www.mat.univie.ac.at/~neum/ms/zauner.pdf |
show all references
References:
[1] |
G. Auberson, A. Martin and G. Mennessier, On the reconstruction of a unitary matrix from its moduli, Commun. Math. Phys., 140 (1991), 417-436.
doi: 10.1007/BF02099133. |
[2] |
S. Bouguezel, M. O. Ahmed and M. N. S. Swami, A new class of reciprocal-orthogonal parametric transforms, IEEE Trans. Circuits Syst. I, 56 (2009), 795-805.
doi: 10.1109/TCSI.2008.2002923. |
[3] |
A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc., 13 (1962), 894-898.
doi: 10.1090/S0002-9939-1962-0142557-0. |
[4] |
R. Craigen, Equivalence classes of inverse orthogonal and unit Hadamard matrices, Bull. Austral. Math. Soc., 44 (1991), 109-115.
doi: 10.1017/S0004972700029506. |
[5] |
P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A, 20 (2004), 5355-5374. |
[6] |
P. Diţă, Complex Hadamard matrices from Sylvester inverse orthogonal matrices, Open Sys. Inform. Dyn., 16 (2009), 387-405; see the errata at arXiv:0901.0982v2 |
[7] |
P. Diţă, Hadamard Matrices from mutually unbiased bases, J. Math. Phys., 51 (2010), 20. |
[8] |
T. Durt, B.-H. Englert, I. Bengtsson and K. Życzkowski, On mutually unbiased bases, Intern. J. Quantum Inform., 8 (2010), 535-640.
doi: 10.1142/S0219749910006502. |
[9] |
U. Haagerup, Orthogonal maximal Abelian *-subalgebras of $n\times n$ matrices and cyclic $n$-roots, in "Operator Algebras and Quantum Field Theory (Rome),'' MA International Press, (1996), 296-322. |
[10] |
M. Harada, C. Lam and V. D. Tonchev, Symmetric $(4,4)$-nets and generalized Hadamard matrices over groups of order $4$, Des. Codes Crypt., 34 (2005), 71-87.
doi: 10.1007/s10623-003-4195-y. |
[11] |
K. J. Horadam, "Hadamard Matrices and Their Applications,'' Princeton University Press, Princeton, 2007. |
[12] |
M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collectanea Math., Extra (2006), 281-291. |
[13] |
M. H. Lee and V. V. Vavrek, Jacket conference matrices and Paley transformation, in "Eleventh International Wokshop on Algebraic and Combinatorial Coding Theory,'' Pamporovo, Bulgaria, (2008), 181-185. |
[14] |
M. Matolcsi, J. Réffy and F. Szöllősi, Constructions of complex Hadamard matrices via tiling abelian groups, Open Sys. Inform. Dyn., 14 (2007), 247-263.
doi: 10.1007/s11080-007-9050-6. |
[15] |
T. S. Michael and W. D. Wallis, Skew-Hadamard matrices and the Smith normal form, Des. Codes Crypt., 13 (1998), 173-176.
doi: 10.1023/A:1008230429804. |
[16] |
S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory, 9 (1983), 253-268. |
[17] |
F. Szöllősi, Parametrizing complex Hadamard matrices, European J. Combin., 29 (2008), 1219-1234.
doi: 10.1016/j.ejc.2007.06.009. |
[18] |
F. Szöllősi, Exotic complex Hadamard matrices and their equivalence, Crypt. Commun., 2 (2010), 187-198.
doi: 10.1007/s12095-010-0021-3. |
[19] |
W. Tadej and K. Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inform. Dyn., 13 (2006), 133-177.
doi: 10.1007/s11080-006-8220-2. |
[20] |
T. Tao, Fuglede's conjecture is false in $5$ and higher dimensions, Math Res. Letters, 11 (2004), 251-258. |
[21] |
R. F. Werner, All teleportation and dense coding schemes, J. Phys. A, 34 (2001), 7081-7094.
doi: 10.1088/0305-4470/34/35/332. |
[22] |
G. Zauner, "Quantendesigns: Grundzäuge einer nichtkommutativen Designtheorie'' (in German), Ph.D thesis, Universität Wien, 1999; available online at http://www.mat.univie.ac.at/~neum/ms/zauner.pdf |
[1] |
Francis C. Motta, Patrick D. Shipman. Informing the structure of complex Hadamard matrix spaces using a flow. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2349-2364. doi: 10.3934/dcdss.2019147 |
[2] |
Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Communications on Pure and Applied Analysis, 2009, 8 (1) : 295-309. doi: 10.3934/cpaa.2009.8.295 |
[3] |
Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009 |
[4] |
Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014 |
[5] |
Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009 |
[6] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[7] |
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026 |
[8] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[9] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[10] |
Henry Adams, Lara Kassab, Deanna Needell. An adaptation for iterative structured matrix completion. Foundations of Data Science, 2021, 3 (4) : 769-791. doi: 10.3934/fods.2021028 |
[11] |
Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial and Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036 |
[12] |
Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55 |
[13] |
Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial and Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701 |
[14] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[15] |
Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052 |
[16] |
Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 |
[17] |
A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347 |
[18] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
[19] |
Leda Bucciantini, Angiolo Farina, Antonio Fasano. Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5 (1) : 63-95. doi: 10.3934/nhm.2010.5.63 |
[20] |
Debasisha Mishra. Matrix group monotonicity using a dominance notion. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 267-274. doi: 10.3934/naco.2015.5.267 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]