May  2011, 5(2): 309-315. doi: 10.3934/amc.2011.5.309

On quaternary complex Hadamard matrices of small orders

1. 

Department of Mathematics and its Applications, Central European University, H-1051, Nádor u. 9, Budapest, Hungary

Received  May 2010 Revised  April 2011 Published  May 2011

One of the main goals of design theory is to classify, characterize and count various combinatorial objects with some prescribed properties. In most cases, however, one quickly encounters a combinatorial explosion and even if the complete enumeration of the objects is possible, there is no apparent way how to study them in details, store them efficiently, or generate a particular one rapidly. In this paper we propose a novel method to deal with these difficulties, and illustrate it by presenting the classification of quaternary complex Hadamard matrices up to order $8$. The obtained matrices are members of only a handful of parametric families, and each inequivalent matrix, up to transposition, can be identified through its fingerprint.
Citation: Ferenc Szöllősi. On quaternary complex Hadamard matrices of small orders. Advances in Mathematics of Communications, 2011, 5 (2) : 309-315. doi: 10.3934/amc.2011.5.309
References:
[1]

G. Auberson, A. Martin and G. Mennessier, On the reconstruction of a unitary matrix from its moduli,, Commun. Math. Phys., 140 (1991), 417.  doi: 10.1007/BF02099133.  Google Scholar

[2]

S. Bouguezel, M. O. Ahmed and M. N. S. Swami, A new class of reciprocal-orthogonal parametric transforms,, IEEE Trans. Circuits Syst. I, 56 (2009), 795.  doi: 10.1109/TCSI.2008.2002923.  Google Scholar

[3]

A. T. Butson, Generalized Hadamard matrices,, Proc. Amer. Math. Soc., 13 (1962), 894.  doi: 10.1090/S0002-9939-1962-0142557-0.  Google Scholar

[4]

R. Craigen, Equivalence classes of inverse orthogonal and unit Hadamard matrices,, Bull. Austral. Math. Soc., 44 (1991), 109.  doi: 10.1017/S0004972700029506.  Google Scholar

[5]

P. Diţă, Some results on the parametrization of complex Hadamard matrices,, J. Phys. A, 20 (2004), 5355.   Google Scholar

[6]

P. Diţă, Complex Hadamard matrices from Sylvester inverse orthogonal matrices,, Open Sys. Inform. Dyn., 16 (2009), 387.   Google Scholar

[7]

P. Diţă, Hadamard Matrices from mutually unbiased bases,, J. Math. Phys., 51 (2010).   Google Scholar

[8]

T. Durt, B.-H. Englert, I. Bengtsson and K. Życzkowski, On mutually unbiased bases,, Intern. J. Quantum Inform., 8 (2010), 535.  doi: 10.1142/S0219749910006502.  Google Scholar

[9]

U. Haagerup, Orthogonal maximal Abelian *-subalgebras of $n\times n$ matrices and cyclic $n$-roots,, in, (1996), 296.   Google Scholar

[10]

M. Harada, C. Lam and V. D. Tonchev, Symmetric $(4,4)$-nets and generalized Hadamard matrices over groups of order $4$,, Des. Codes Crypt., 34 (2005), 71.  doi: 10.1007/s10623-003-4195-y.  Google Scholar

[11]

K. J. Horadam, "Hadamard Matrices and Their Applications,'', Princeton University Press, (2007).   Google Scholar

[12]

M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture,, Collectanea Math., Extra (2006), 281.   Google Scholar

[13]

M. H. Lee and V. V. Vavrek, Jacket conference matrices and Paley transformation,, in, (2008), 181.   Google Scholar

[14]

M. Matolcsi, J. Réffy and F. Szöllősi, Constructions of complex Hadamard matrices via tiling abelian groups,, Open Sys. Inform. Dyn., 14 (2007), 247.  doi: 10.1007/s11080-007-9050-6.  Google Scholar

[15]

T. S. Michael and W. D. Wallis, Skew-Hadamard matrices and the Smith normal form,, Des. Codes Crypt., 13 (1998), 173.  doi: 10.1023/A:1008230429804.  Google Scholar

[16]

S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras,, J. Operator Theory, 9 (1983), 253.   Google Scholar

[17]

F. Szöllősi, Parametrizing complex Hadamard matrices,, European J. Combin., 29 (2008), 1219.  doi: 10.1016/j.ejc.2007.06.009.  Google Scholar

[18]

F. Szöllősi, Exotic complex Hadamard matrices and their equivalence,, Crypt. Commun., 2 (2010), 187.  doi: 10.1007/s12095-010-0021-3.  Google Scholar

[19]

W. Tadej and K. Życzkowski, A concise guide to complex Hadamard matrices,, Open Syst. Inform. Dyn., 13 (2006), 133.  doi: 10.1007/s11080-006-8220-2.  Google Scholar

[20]

T. Tao, Fuglede's conjecture is false in $5$ and higher dimensions,, Math Res. Letters, 11 (2004), 251.   Google Scholar

[21]

R. F. Werner, All teleportation and dense coding schemes,, J. Phys. A, 34 (2001), 7081.  doi: 10.1088/0305-4470/34/35/332.  Google Scholar

[22]

G. Zauner, "Quantendesigns: Grundzäuge einer nichtkommutativen Designtheorie'' (in German),, Ph.D thesis, (1999).   Google Scholar

show all references

References:
[1]

G. Auberson, A. Martin and G. Mennessier, On the reconstruction of a unitary matrix from its moduli,, Commun. Math. Phys., 140 (1991), 417.  doi: 10.1007/BF02099133.  Google Scholar

[2]

S. Bouguezel, M. O. Ahmed and M. N. S. Swami, A new class of reciprocal-orthogonal parametric transforms,, IEEE Trans. Circuits Syst. I, 56 (2009), 795.  doi: 10.1109/TCSI.2008.2002923.  Google Scholar

[3]

A. T. Butson, Generalized Hadamard matrices,, Proc. Amer. Math. Soc., 13 (1962), 894.  doi: 10.1090/S0002-9939-1962-0142557-0.  Google Scholar

[4]

R. Craigen, Equivalence classes of inverse orthogonal and unit Hadamard matrices,, Bull. Austral. Math. Soc., 44 (1991), 109.  doi: 10.1017/S0004972700029506.  Google Scholar

[5]

P. Diţă, Some results on the parametrization of complex Hadamard matrices,, J. Phys. A, 20 (2004), 5355.   Google Scholar

[6]

P. Diţă, Complex Hadamard matrices from Sylvester inverse orthogonal matrices,, Open Sys. Inform. Dyn., 16 (2009), 387.   Google Scholar

[7]

P. Diţă, Hadamard Matrices from mutually unbiased bases,, J. Math. Phys., 51 (2010).   Google Scholar

[8]

T. Durt, B.-H. Englert, I. Bengtsson and K. Życzkowski, On mutually unbiased bases,, Intern. J. Quantum Inform., 8 (2010), 535.  doi: 10.1142/S0219749910006502.  Google Scholar

[9]

U. Haagerup, Orthogonal maximal Abelian *-subalgebras of $n\times n$ matrices and cyclic $n$-roots,, in, (1996), 296.   Google Scholar

[10]

M. Harada, C. Lam and V. D. Tonchev, Symmetric $(4,4)$-nets and generalized Hadamard matrices over groups of order $4$,, Des. Codes Crypt., 34 (2005), 71.  doi: 10.1007/s10623-003-4195-y.  Google Scholar

[11]

K. J. Horadam, "Hadamard Matrices and Their Applications,'', Princeton University Press, (2007).   Google Scholar

[12]

M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture,, Collectanea Math., Extra (2006), 281.   Google Scholar

[13]

M. H. Lee and V. V. Vavrek, Jacket conference matrices and Paley transformation,, in, (2008), 181.   Google Scholar

[14]

M. Matolcsi, J. Réffy and F. Szöllősi, Constructions of complex Hadamard matrices via tiling abelian groups,, Open Sys. Inform. Dyn., 14 (2007), 247.  doi: 10.1007/s11080-007-9050-6.  Google Scholar

[15]

T. S. Michael and W. D. Wallis, Skew-Hadamard matrices and the Smith normal form,, Des. Codes Crypt., 13 (1998), 173.  doi: 10.1023/A:1008230429804.  Google Scholar

[16]

S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras,, J. Operator Theory, 9 (1983), 253.   Google Scholar

[17]

F. Szöllősi, Parametrizing complex Hadamard matrices,, European J. Combin., 29 (2008), 1219.  doi: 10.1016/j.ejc.2007.06.009.  Google Scholar

[18]

F. Szöllősi, Exotic complex Hadamard matrices and their equivalence,, Crypt. Commun., 2 (2010), 187.  doi: 10.1007/s12095-010-0021-3.  Google Scholar

[19]

W. Tadej and K. Życzkowski, A concise guide to complex Hadamard matrices,, Open Syst. Inform. Dyn., 13 (2006), 133.  doi: 10.1007/s11080-006-8220-2.  Google Scholar

[20]

T. Tao, Fuglede's conjecture is false in $5$ and higher dimensions,, Math Res. Letters, 11 (2004), 251.   Google Scholar

[21]

R. F. Werner, All teleportation and dense coding schemes,, J. Phys. A, 34 (2001), 7081.  doi: 10.1088/0305-4470/34/35/332.  Google Scholar

[22]

G. Zauner, "Quantendesigns: Grundzäuge einer nichtkommutativen Designtheorie'' (in German),, Ph.D thesis, (1999).   Google Scholar

[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[3]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[4]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[5]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[9]

Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020358

[10]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[11]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[15]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[16]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[17]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[18]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]