May  2011, 5(2): 317-331. doi: 10.3934/amc.2011.5.317

Characterization of some optimal arcs

1. 

New Bulgarian University, 21 Montevideo St., 1618 Sofia, Bulgaria

2. 

Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1126 Sofia, Bulgaria

Received  May 2010 Revised  December 2010 Published  May 2011

In this paper, we prove the nonexistence of arcs with parameters $(398,101)$, $(464,117)$, and $(467,118)$ in PG$(4,4)$. The proof relies on the geometric characterization of $(117,30)$- and $(118,30)$-arcs in PG$(3,4)$. This settles the problem of finding the exact value of $n_4(5,d)$ for eight values of $d$: $297,298,347,348,349,...,352$.
Citation: Ivan Landjev, Assia Rousseva. Characterization of some optimal arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 317-331. doi: 10.3934/amc.2011.5.317
References:
[1]

S. Ball, R. Hill, I. Landjev and H. Ward, On $(q^2+q+2,q+2)$-arcs in the projective plane PG$(2,q)$,, Des. Codes Crypt., 24 (2001), 205.  doi: 10.1023/A:1011260806005.  Google Scholar

[2]

A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces,, Geom. Dedicata, 9 (1980), 130.  doi: 10.1007/BF00181559.  Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[4]

Y. Edel and J. Bierbrauer, 41 is the larest size of a cap in PG$(4,4)$,, Des. Codes Crypt., 16 (1999), 151.  doi: 10.1023/A:1008389013117.  Google Scholar

[5]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Crypt., ().   Google Scholar

[6]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532.  doi: 10.1147/rd.45.0532.  Google Scholar

[7]

N. Hamada and M. Deza, A characterization of $\{v$$\mu+1$$+\varepsilon,v$$\mu$$;t,q\}$-minihypers and its application to error-correcting codes and factorial design,, J. Statist. Plann. Inference, 22 (1989), 323.  doi: 10.1016/0378-3758(89)90098-0.  Google Scholar

[8]

N. Hamada and T. Helleseth, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound,, Math. Japonica, 38 (1993), 925.   Google Scholar

[9]

N. Hamada and T. Maekawa, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound. II,, Math. Japonica, 46 (1997), 241.   Google Scholar

[10]

R. Hill, Some results concerning linear codes and $(k,3)$-caps in three-dimensional Galois space,, Math. Proc. Cambridge Phil. Soc., 84 (1978), 191.  doi: 10.1017/S0305004100055031.  Google Scholar

[11]

R. Hill and P. Lizak, Extensions of linear codes,, in, (1995).   Google Scholar

[12]

R. Hill and H. N. Ward, A geometric approach to classifying Griesmer codes,, Des. Codes Crypt., 44 (2007), 169.  doi: 10.1007/s10623-007-9086-1.  Google Scholar

[13]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition,, Oxford University Press, (1998).   Google Scholar

[14]

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces,, in, (2001), 201.   Google Scholar

[15]

I. Landjev, Linear codes over finite fields and finite projective geometries,, Discrete Math., 213 (2000), 211.  doi: 10.1016/S0012-365X(99)00183-1.  Google Scholar

[16]

I. Landjev, The geometric approach to linear codes,, in, (2001), 247.   Google Scholar

[17]

I. Landjev and T. Honold, Arcs in projective Hjelmslev planes,, Discrete Math. Appl., 11 (2001), 53.  doi: 10.1515/dma.2001.11.1.53.  Google Scholar

[18]

I. Landjev and T. Maruta, On the minmum length of quaternary linear codes of dimension five,, Discrete Math., 202 (1999), 145.  doi: 10.1016/S0012-365X(98)00354-9.  Google Scholar

[19]

I. Landjev and A. Rousseva, On the existence of some optimal arcs in PG$(4,4)$,, in, (2002), 176.   Google Scholar

[20]

I. Landjev and A. Rousseva, An extension theorem for arcs and linear codes,, Probl. Inf. Trans., 42 (2006), 65.  doi: 10.1134/S0032946006040041.  Google Scholar

[21]

I. Landjev and L. Storme, A study of $(x(q+1),x;2,q)$-minihypers,, Des. Codes Crypt., 54 (2010), 135.  doi: 10.1007/s10623-009-9314-y.  Google Scholar

[22]

T. Maruta, On the minimum length of $q$-ary linear codes of dimension four,, Discrete Math., 208/209 (1999), 427.  doi: 10.1016/S0012-365X(99)00088-6.  Google Scholar

[23]

T. Maruta, The nonexistence of some quaternary linear codes of dimension 5,, Discrete Math., 238 (2001), 99.  doi: 10.1016/S0012-365X(00)00413-1.  Google Scholar

[24]

, T. Maruta,, \url{http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm}, ().   Google Scholar

[25]

L. Storme, J. A. Thas and S. K. J. Vereecke, New upper bounds on the sizes of caps in finite projective spaces,, J. Geometry, 73 (2002), 176.  doi: 10.1007/s00022-002-8590-8.  Google Scholar

[26]

H. N. Ward, Divisibility of codes meeting the Griesmer bound,, J. Combin. Theory Ser. A, 83 (1998), 79.  doi: 10.1006/jcta.1997.2864.  Google Scholar

show all references

References:
[1]

S. Ball, R. Hill, I. Landjev and H. Ward, On $(q^2+q+2,q+2)$-arcs in the projective plane PG$(2,q)$,, Des. Codes Crypt., 24 (2001), 205.  doi: 10.1023/A:1011260806005.  Google Scholar

[2]

A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces,, Geom. Dedicata, 9 (1980), 130.  doi: 10.1007/BF00181559.  Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[4]

Y. Edel and J. Bierbrauer, 41 is the larest size of a cap in PG$(4,4)$,, Des. Codes Crypt., 16 (1999), 151.  doi: 10.1023/A:1008389013117.  Google Scholar

[5]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Crypt., ().   Google Scholar

[6]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532.  doi: 10.1147/rd.45.0532.  Google Scholar

[7]

N. Hamada and M. Deza, A characterization of $\{v$$\mu+1$$+\varepsilon,v$$\mu$$;t,q\}$-minihypers and its application to error-correcting codes and factorial design,, J. Statist. Plann. Inference, 22 (1989), 323.  doi: 10.1016/0378-3758(89)90098-0.  Google Scholar

[8]

N. Hamada and T. Helleseth, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound,, Math. Japonica, 38 (1993), 925.   Google Scholar

[9]

N. Hamada and T. Maekawa, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound. II,, Math. Japonica, 46 (1997), 241.   Google Scholar

[10]

R. Hill, Some results concerning linear codes and $(k,3)$-caps in three-dimensional Galois space,, Math. Proc. Cambridge Phil. Soc., 84 (1978), 191.  doi: 10.1017/S0305004100055031.  Google Scholar

[11]

R. Hill and P. Lizak, Extensions of linear codes,, in, (1995).   Google Scholar

[12]

R. Hill and H. N. Ward, A geometric approach to classifying Griesmer codes,, Des. Codes Crypt., 44 (2007), 169.  doi: 10.1007/s10623-007-9086-1.  Google Scholar

[13]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition,, Oxford University Press, (1998).   Google Scholar

[14]

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces,, in, (2001), 201.   Google Scholar

[15]

I. Landjev, Linear codes over finite fields and finite projective geometries,, Discrete Math., 213 (2000), 211.  doi: 10.1016/S0012-365X(99)00183-1.  Google Scholar

[16]

I. Landjev, The geometric approach to linear codes,, in, (2001), 247.   Google Scholar

[17]

I. Landjev and T. Honold, Arcs in projective Hjelmslev planes,, Discrete Math. Appl., 11 (2001), 53.  doi: 10.1515/dma.2001.11.1.53.  Google Scholar

[18]

I. Landjev and T. Maruta, On the minmum length of quaternary linear codes of dimension five,, Discrete Math., 202 (1999), 145.  doi: 10.1016/S0012-365X(98)00354-9.  Google Scholar

[19]

I. Landjev and A. Rousseva, On the existence of some optimal arcs in PG$(4,4)$,, in, (2002), 176.   Google Scholar

[20]

I. Landjev and A. Rousseva, An extension theorem for arcs and linear codes,, Probl. Inf. Trans., 42 (2006), 65.  doi: 10.1134/S0032946006040041.  Google Scholar

[21]

I. Landjev and L. Storme, A study of $(x(q+1),x;2,q)$-minihypers,, Des. Codes Crypt., 54 (2010), 135.  doi: 10.1007/s10623-009-9314-y.  Google Scholar

[22]

T. Maruta, On the minimum length of $q$-ary linear codes of dimension four,, Discrete Math., 208/209 (1999), 427.  doi: 10.1016/S0012-365X(99)00088-6.  Google Scholar

[23]

T. Maruta, The nonexistence of some quaternary linear codes of dimension 5,, Discrete Math., 238 (2001), 99.  doi: 10.1016/S0012-365X(00)00413-1.  Google Scholar

[24]

, T. Maruta,, \url{http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm}, ().   Google Scholar

[25]

L. Storme, J. A. Thas and S. K. J. Vereecke, New upper bounds on the sizes of caps in finite projective spaces,, J. Geometry, 73 (2002), 176.  doi: 10.1007/s00022-002-8590-8.  Google Scholar

[26]

H. N. Ward, Divisibility of codes meeting the Griesmer bound,, J. Combin. Theory Ser. A, 83 (1998), 79.  doi: 10.1006/jcta.1997.2864.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[9]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[10]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]