May  2011, 5(2): 333-337. doi: 10.3934/amc.2011.5.333

On the non-minimality of the largest weight codewords in the binary Reed-Muller codes

1. 

Department of Mathematics, Ghent University, Krijgslaan 281 - S22, 9000 Ghent, Belgium, Belgium

Received  May 2010 Revised  August 2010 Published  August 2011

The study of minimal codewords in linear codes was motivated by Massey who described how minimal codewords of a linear code define access structures for secret sharing schemes. As a consequence of his article, Borissov, Manev, and Nikova initiated the study of minimal codewords in the binary Reed-Muller codes. They counted the number of non-minimal codewords of weight $2d$ in the binary Reed-Muller codes RM$(r,m)$, and also gave results on the non-minimality of codewords of large weight in the binary Reed-Muller codes RM$(r,m)$. The results of Borissov, Manev, and Nikova regarding the counting of the number of non-minimal codewords of small weight in RM$(r,m)$ were improved by Schillewaert, Storme, and Thas who counted the number of non-minimal codewords of weight smaller than $3d$ in RM$(r,m)$. This article now presents new results on the non-minimality of large weight codewords in RM$(r,m)$.
Citation: Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333
References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes,, IEEE Trans. Inform. Theory, 44 (1998), 2010.  doi: 10.1109/18.705584.  Google Scholar

[2]

Y. Borissov, N. L. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes,, Discrete Appl. Math., 128 (2003), 65.  doi: 10.1016/S0166-218X(02)00436-5.  Google Scholar

[3]

T. Kasami and N. Tokura, On the weight structure of Reed-Muller codes,, IEEE Trans. Inform. Theory, IT-16 (1970), 752.  doi: 10.1109/TIT.1970.1054545.  Google Scholar

[4]

T. Kasami, N. Tokura and S. Azumi, On the weight enumeration of weight less than $2.5d$ of Reed-Muller codes,, Rept. of Faculty of Eng. Sci., (1974).   Google Scholar

[5]

T. Kasami, N. Tokura and S. Azumi, On the weight enumeration of weight less than $2.5d$ of Reed-Muller codes,, Inform. Control, 30 (1976), 380.  doi: 10.1016/S0019-9958(76)90355-7.  Google Scholar

[6]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland, (1977).   Google Scholar

[7]

J. L. Massey, Minimal codewords and secret sharing,, in, (1993), 276.   Google Scholar

[8]

J. Schillewaert, L. Storme and J. A. Thas, Minimal codewords in Reed-Muller codes,, Des. Codes Crypt., 54 (2010), 273.  doi: 10.1007/s10623-009-9323-x.  Google Scholar

show all references

References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes,, IEEE Trans. Inform. Theory, 44 (1998), 2010.  doi: 10.1109/18.705584.  Google Scholar

[2]

Y. Borissov, N. L. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes,, Discrete Appl. Math., 128 (2003), 65.  doi: 10.1016/S0166-218X(02)00436-5.  Google Scholar

[3]

T. Kasami and N. Tokura, On the weight structure of Reed-Muller codes,, IEEE Trans. Inform. Theory, IT-16 (1970), 752.  doi: 10.1109/TIT.1970.1054545.  Google Scholar

[4]

T. Kasami, N. Tokura and S. Azumi, On the weight enumeration of weight less than $2.5d$ of Reed-Muller codes,, Rept. of Faculty of Eng. Sci., (1974).   Google Scholar

[5]

T. Kasami, N. Tokura and S. Azumi, On the weight enumeration of weight less than $2.5d$ of Reed-Muller codes,, Inform. Control, 30 (1976), 380.  doi: 10.1016/S0019-9958(76)90355-7.  Google Scholar

[6]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland, (1977).   Google Scholar

[7]

J. L. Massey, Minimal codewords and secret sharing,, in, (1993), 276.   Google Scholar

[8]

J. Schillewaert, L. Storme and J. A. Thas, Minimal codewords in Reed-Muller codes,, Des. Codes Crypt., 54 (2010), 273.  doi: 10.1007/s10623-009-9323-x.  Google Scholar

[1]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[2]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[3]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[4]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[5]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[6]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[7]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[8]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[9]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[10]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[11]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[12]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[13]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[14]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[15]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[16]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[17]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[18]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[19]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[20]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]