Citation: |
[1] |
A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inform. Theory, 44 (1998), 2010-2017.doi: 10.1109/18.705584. |
[2] |
Y. Borissov, N. L. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.doi: 10.1016/S0166-218X(02)00436-5. |
[3] |
T. Kasami and N. Tokura, On the weight structure of Reed-Muller codes, IEEE Trans. Inform. Theory, IT-16 (1970), 752-759.doi: 10.1109/TIT.1970.1054545. |
[4] |
T. Kasami, N. Tokura and S. Azumi, On the weight enumeration of weight less than $2.5d$ of Reed-Muller codes, Rept. of Faculty of Eng. Sci., Osaka Univ., Japan, 1974. |
[5] |
T. Kasami, N. Tokura and S. Azumi, On the weight enumeration of weight less than $2.5d$ of Reed-Muller codes, Inform. Control, 30 (1976), 380-395.doi: 10.1016/S0019-9958(76)90355-7. |
[6] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, Amsterdam, 1977. |
[7] |
J. L. Massey, Minimal codewords and secret sharing, in "Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory,'' (1993), 276-279. |
[8] |
J. Schillewaert, L. Storme and J. A. Thas, Minimal codewords in Reed-Muller codes, Des. Codes Crypt., 54 (2010), 273-286.doi: 10.1007/s10623-009-9323-x. |