May  2011, 5(2): 339-350. doi: 10.3934/amc.2011.5.339

Some optimal codes related to graphs invariant under the alternating group $A_8$

1. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa

Received  May 2010 Revised  March 2011 Published  May 2011

The alternating group $A_8$, acts as a primitive rank-3 group of degree $35$ on the set of lines of $V_4(2)$ with line stabilizer isomorphic to $2^4:(S_3 \times S_3)$ and orbits of lengths 1, 16 and 18 respectively. This action defines the unique strongly regular $(35, 16, 6, 8)$ graph. The paper examines the binary (resp. ternary) codes spanned by the rows of this graph, and its complement. We establish some properties of the codes and use the geometry of the designs and graphs to give an account on the nature of some classes of codewords, in particular those of minimum weight. Further, we show that the codes with parameters $[35, 28, 4]_2,[35, 6, 16]_2,[35, 29, 3]_2,[28, 7, 12]_2,[28, 21,4]_2, [36, 7, 16]_2, [36,29,4]_2$ and $[64, 56, 4]_2$ are all optimal. In addition, we show that the codes with parameters $[35, 13, 12]_3, [35, 22, 5]_3,[35, 14, 11]_3, [35, 21, 6]_3$ are all near-optimal for the given length and dimension.
Citation: Bernardo Gabriel Rodrigues. Some optimal codes related to graphs invariant under the alternating group $A_8$. Advances in Mathematics of Communications, 2011, 5 (2) : 339-350. doi: 10.3934/amc.2011.5.339
References:
[1]

E. F. Assmus, Jr. and J. D. Key, "Designs and Their Codes,'', Cambridge University Press, (1992).   Google Scholar

[2]

E. F. Assmus, Jr. and J. D. Key, Hadamard matrices and their designs: a coding-theoretic approach,, Trans. Amer. Math. Soc., 330 (1992), 269.  doi: 10.2307/2154164.  Google Scholar

[3]

W. Bosma and J. Cannon, Handbook of Magma Functions,, Department of Mathematics, (1994).   Google Scholar

[4]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97.  doi: 10.1112/blms/18.2.97.  Google Scholar

[5]

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, "Atlas of Finite Groups,'', Oxford University Press, (1985).   Google Scholar

[6]

D. Crnković, V. Mikulić and S. Rukavina, Block designs constructed from the group U$(3,3)$,, J. Appl. Algebra Discrete Struct., 2 (2004), 69.   Google Scholar

[7]

U. Dempwolff, Primitive rank-$3$ groups on symmetric designs,, Des. Codes Crypt., 22 (2001), 191.  doi: 10.1023/A:1008373207617.  Google Scholar

[8]

L. E. Dickson, "Linear Groups with an Exposition of the Galois Field Theory,'', Dover Publications, (1958).   Google Scholar

[9]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at \url{http://www.codetables.de}, ().   Google Scholar

[10]

W. H. Haemers, R. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs,, Des. Codes Crypt., 17 (1999), 187.  doi: 10.1023/A:1026479210284.  Google Scholar

[11]

C. Jansen, K. Lux, R. Parker and R. Wilson, "An Atlas of Brauer Characters,'' with Appendix 2 by T. Breuer and S. Norton,, The Clarendon Press, (1995).   Google Scholar

[12]

W. M. Kantor, Symplectic groups, symmetric designs, and line ovals,, J. Algebra, 33 (1975), 43.  doi: 10.1016/0021-8693(75)90130-1.  Google Scholar

[13]

J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups $J_1$ and $J_2$,, J. Combin. Math. Combin. Comput., 40 (2002), 143.   Google Scholar

[14]

J. D. Key and J. Moori, Correction to: Codes, designs and graphs from the Janko groups $J_1$ and $J_2$, [J. Combin. Math. Combin. Comput., 40 (2002), 143-159],, J. Combin. Math. Combin. Comput., 64 (2008).   Google Scholar

[15]

J. D. Key, J. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups,, J. Combin. Math. Combin. Comput., 45 (2003), 3.   Google Scholar

[16]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under M$^c$L:2,, J. Combin. Theory Ser. A, 110 (2005), 53.  doi: 10.1016/j.jcta.2004.10.001.  Google Scholar

[17]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under M$^c$L,, Ars Combin., 91 (2009), 321.   Google Scholar

[18]

C. Parker, E. Spence and V. D. Tonchev, Designs with the symmetric difference property on 64 points and their groups,, J. Combin. Theory Ser. A, 67 (1994), 23.  doi: 10.1016/0097-3165(94)90002-7.  Google Scholar

[19]

R. Peeters, Uniqueness of strongly regular graphs having minimal $p$-rank,, Linear Algebra Appl., 226/228 (1995), 9.  doi: 10.1016/0024-3795(95)00184-S.  Google Scholar

[20]

B. G. Rodrigues, "Codes of Designs and Graphs from Finite Simple Groups,'', Ph.D. thesis, (2002).   Google Scholar

[21]

D. E. Taylor, "The Geometry of the Classical Groups,'', Heldermann Verlag, (1992).   Google Scholar

[22]

V. D. Tonchev, Hadamard matrices of order $36$ with automorphisms of order $17$,, Nagoya Math. J., 104 (1986), 163.   Google Scholar

[23]

R. A. Wilson, R. A. Parker and J. N. Bray, "Atlas of Finite Group Representations,'', available online at \url{http://brauer.maths.qmul.ac.uk/Atlas/alt/A8/}, ().   Google Scholar

show all references

References:
[1]

E. F. Assmus, Jr. and J. D. Key, "Designs and Their Codes,'', Cambridge University Press, (1992).   Google Scholar

[2]

E. F. Assmus, Jr. and J. D. Key, Hadamard matrices and their designs: a coding-theoretic approach,, Trans. Amer. Math. Soc., 330 (1992), 269.  doi: 10.2307/2154164.  Google Scholar

[3]

W. Bosma and J. Cannon, Handbook of Magma Functions,, Department of Mathematics, (1994).   Google Scholar

[4]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes,, Bull. London Math. Soc., 18 (1986), 97.  doi: 10.1112/blms/18.2.97.  Google Scholar

[5]

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, "Atlas of Finite Groups,'', Oxford University Press, (1985).   Google Scholar

[6]

D. Crnković, V. Mikulić and S. Rukavina, Block designs constructed from the group U$(3,3)$,, J. Appl. Algebra Discrete Struct., 2 (2004), 69.   Google Scholar

[7]

U. Dempwolff, Primitive rank-$3$ groups on symmetric designs,, Des. Codes Crypt., 22 (2001), 191.  doi: 10.1023/A:1008373207617.  Google Scholar

[8]

L. E. Dickson, "Linear Groups with an Exposition of the Galois Field Theory,'', Dover Publications, (1958).   Google Scholar

[9]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at \url{http://www.codetables.de}, ().   Google Scholar

[10]

W. H. Haemers, R. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs,, Des. Codes Crypt., 17 (1999), 187.  doi: 10.1023/A:1026479210284.  Google Scholar

[11]

C. Jansen, K. Lux, R. Parker and R. Wilson, "An Atlas of Brauer Characters,'' with Appendix 2 by T. Breuer and S. Norton,, The Clarendon Press, (1995).   Google Scholar

[12]

W. M. Kantor, Symplectic groups, symmetric designs, and line ovals,, J. Algebra, 33 (1975), 43.  doi: 10.1016/0021-8693(75)90130-1.  Google Scholar

[13]

J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups $J_1$ and $J_2$,, J. Combin. Math. Combin. Comput., 40 (2002), 143.   Google Scholar

[14]

J. D. Key and J. Moori, Correction to: Codes, designs and graphs from the Janko groups $J_1$ and $J_2$, [J. Combin. Math. Combin. Comput., 40 (2002), 143-159],, J. Combin. Math. Combin. Comput., 64 (2008).   Google Scholar

[15]

J. D. Key, J. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups,, J. Combin. Math. Combin. Comput., 45 (2003), 3.   Google Scholar

[16]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under M$^c$L:2,, J. Combin. Theory Ser. A, 110 (2005), 53.  doi: 10.1016/j.jcta.2004.10.001.  Google Scholar

[17]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under M$^c$L,, Ars Combin., 91 (2009), 321.   Google Scholar

[18]

C. Parker, E. Spence and V. D. Tonchev, Designs with the symmetric difference property on 64 points and their groups,, J. Combin. Theory Ser. A, 67 (1994), 23.  doi: 10.1016/0097-3165(94)90002-7.  Google Scholar

[19]

R. Peeters, Uniqueness of strongly regular graphs having minimal $p$-rank,, Linear Algebra Appl., 226/228 (1995), 9.  doi: 10.1016/0024-3795(95)00184-S.  Google Scholar

[20]

B. G. Rodrigues, "Codes of Designs and Graphs from Finite Simple Groups,'', Ph.D. thesis, (2002).   Google Scholar

[21]

D. E. Taylor, "The Geometry of the Classical Groups,'', Heldermann Verlag, (1992).   Google Scholar

[22]

V. D. Tonchev, Hadamard matrices of order $36$ with automorphisms of order $17$,, Nagoya Math. J., 104 (1986), 163.   Google Scholar

[23]

R. A. Wilson, R. A. Parker and J. N. Bray, "Atlas of Finite Group Representations,'', available online at \url{http://brauer.maths.qmul.ac.uk/Atlas/alt/A8/}, ().   Google Scholar

[1]

Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

[2]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[3]

Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499

[4]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[5]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[6]

Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018

[7]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[8]

Annika Meyer. On dual extremal maximal self-orthogonal codes of Type I-IV. Advances in Mathematics of Communications, 2010, 4 (4) : 579-596. doi: 10.3934/amc.2010.4.579

[9]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020032

[10]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[11]

W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57

[12]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[13]

Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003

[14]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[15]

Cuiling Fan, Koji Momihara. Unified combinatorial constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2014, 8 (1) : 53-66. doi: 10.3934/amc.2014.8.53

[16]

T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451

[17]

Thomas Feulner. The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Advances in Mathematics of Communications, 2009, 3 (4) : 363-383. doi: 10.3934/amc.2009.3.363

[18]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[19]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020023

[20]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]