Advanced Search
Article Contents
Article Contents

Associating a numerical semigroup to the triangle-free configurations

Abstract Related Papers Cited by
  • It is proved that a numerical semigroup can be associated to the triangle-free $(r,k)$-configurations, and some results on existence are deduced. For example it is proved that for any $r,k\geq 2$ there exists infinitely many $(r,k)$-configurations. Most proofs are given from a graph theoretical point of view, in the sense that the configurations are represented by their incidence graphs. An application to private information retrieval is described.
    Mathematics Subject Classification: Primary: 05B30; Secondary: 51E30, 20M99.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Araujo-Pardo, On upper bounds of odd girth cages, Discrete Math., 310 (2010), 1622-1626.doi: 10.1016/j.disc.2009.12.025.


    C. Balbuena, A construction of small regular bipartite graphs of girth 8, Discrete Math. Theor. Comp. Sci., 11 (2009), 33-46.


    A. Betten, G. Brinkmann and T. Pisanski, Counting symmetric configurations $v_3$, Discrete Appl. Math., 99 (2000), 331-338.doi: 10.1016/S0166-218X(99)00143-2.


    N. Biggs, "Algebraic Graph Theory," 2nd edition, Cambridge University Press, Cambridge, 1993.


    J. G. Bokowski, "Computational Oriented Matroids," Cambridge University Press, Cambridge, 2006.


    M. Bras-Amorós and K. StokesThe semigroup of combinatorial configurations, preprint, arXiv:0907.4230v3


    F. De Clerck, J. A. Thas and H. Van Maldeghem, Generalized polygons and semipartial geometries, EIDMA minicourse, 1996.


    J. Domingo-Ferrer and M. Bras-Amorós, Peer-to-peer private information retrieval, in "Privacy in Statistical Databases,'' (2008), 315-323.


    J. Domingo-Ferrer, M. Bras-Amorós, Q. Wu and J. Manjón, User-private information retrieval based on a peer-to-peer community, Data Knowl. Eng., 68 (2009), 1237-1252.doi: 10.1016/j.datak.2009.06.004.


    M. Flanagan, M. Greferath and C. Roessing, An encoding scheme, and a decoding scheme using a series of LDPC codes based on finite inversive spaces, Technical Publication, 2007.


    M. Flanagan, M. Greferath and C. Roessing, On LDPC codes from $(0,1)$-geometries induced by finite inversive spaces of even order, in "Workshop on Coding and Cryptography 2007, WCC '07,'' Versailles, France, 2007.


    A. Gács and T. Héger, On geometric constructions of $(k,g)$-graphs, Contrib. Discrete Math., 3 (2008), 63-80.


    H. Gropp, Configurations, in "The CRC Handbook Of Combinatorial Designs" (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 352-355.


    B. Grünbaum, "Configurations of Points and Lines,'' American Mathematical Society, Providence, RI, 2009.


    F. Lazebnik, V. A. Ustimenko and A. J. Woldar, New upper bounds on the order of cages, Electr. J. Combin., 4 (1997), 11.


    J. Lee and D. R. Stinson, A combinatorial approach to key predistribution for distributed sensor networks, in "IEEE Wireless Communications and Networking Conference, CD-ROM,'' paper PHY53-06, (2005), 6.


    J. Lee and D. R. Stinson, On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs, ACM Trans. Inf. Syst. Secur., 11 (2008), 1-35.doi: 10.1145/1330332.1330333.


    V. Martinetti, Sopra alcune configurazioni piane, Annali Mat. Pura Appl (1867-1897), 14 (1886), 161-192.


    J. M. F Moura, J. Lu and H. Zhang, Structured LDPC codes with large girth, in "IEEE Signal Processing Magazine, Special Issue on Iterative Signal Processing for Communications,'' 21 (2004), 42-55.


    S. E. Payne and J. A. Thas, "Finite Generalized Quadrangles,'' European Math. Soc., Zürich, 2009.


    T. Pisanski, Yet another look at the Gray graph, New Zealand J. Math, 36 (2007), 85-92.


    T. Pisanski, M. Boben and D. Marušič, A. Orbanić and A. Graovac, The 10-cages and derived configurations, Discrete Math., 275 (2004), 265-276.doi: 10.1016/S0012-365X(03)00110-9.


    J. L. Ramírez Alfonsín, "The Diophantine Frobenius Problem,'' Oxford University Press, Oxford, 2005.


    J. C. Rosales and P. A. García-Sánchez, "Numerical Semigroups,'' Springer, New York, 2009.


    H. Sachs, Regular graphs with given girth and restricted circuits, J. London Math. Soc., 38 (1963), 423-429.doi: 10.1112/jlms/s1-38.1.423.


    K. Sinha, A triangle free configuration, Časopis Pěst. Mat., 103 (1978), 147-148, 202.


    K. Stokes and M. Bras-Amorós, Optimal configurations for peer-to-peer user-private information retrieval, Comp. Math. Appl., 59 (2010), 1568-1577.doi: 10.1016/j.camwa.2010.01.003.


    L. Storme, Finite geometry, in "The CRC Handbook Of Combinatorial Designs" (eds. C.J. Colbourn and J.H. Dinitz), 2nd edition, CRC Press, Boca Raton, FL, (2007), 702-729.


    B. Vasic and O. Milenkovic, Combinatorial constructions of low-density parity-check codes for iterative decoding, IEEE Trans. Inform. Theory, 50 (2004), 1156-1176.doi: 10.1109/TIT.2004.828066.


    A. Viejo and J. Castellà-Roca, Using social networks to distort users' profiles generated by web search engines, Computer Networks, 54 (2010), 1343-1357.doi: 10.1016/j.comnet.2009.11.003.


    E. Visconti, Sulle configurazioni piane atrigone, Giornale Mat. Battaglini, 54 (1916), 27-41.


    P. K. Wong, Cages-a survey, J. Graph Theory, 6 (1982), 1-22.doi: 10.1002/jgt.3190060103.

  • 加载中

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint