February  2011, 5(1): 37-40. doi: 10.3934/amc.2011.5.37

The minimum order of complete caps in $PG(4,4)$

1. 

Department of Mathematics and Informatics, Perugia University, Perugia, 06123, Italy, Italy, Italy

2. 

Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences, GSP-4, Moscow, 127994, Russian Federation

Received  April 2010 Revised  December 2010 Published  February 2011

It has been verified that in $PG(4,4)$ the smallest size of complete caps is 20 and that the values from 20 to 41 form the spectrum of possible sizes of complete caps. This result has been obtained by a computer-based proof helped by the non existence of some codes.
Citation: Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. The minimum order of complete caps in $PG(4,4)$. Advances in Mathematics of Communications, 2011, 5 (1) : 37-40. doi: 10.3934/amc.2011.5.37
References:
[1]

D. Bartoli, "Quantum Codes and Related Geometric Properties,'', Ph.D thesis, (2008).   Google Scholar

[2]

D. Bartoli, J. Bierbrauer, S. Marcugini and F. Pambianco, Geometric constructions of quantum codes,, in, (2010), 149.   Google Scholar

[3]

D. Bartoli, S. Marcugini and F. Pambianco, A computer based classification of caps in $PG(3,4)$,, in, (2009).   Google Scholar

[4]

D. Bartoli, S. Marcugini and F. Pambianco, New quantum caps in $PG(4,4)$,, submitted., ().   Google Scholar

[5]

J. Bierbrauer, "Introduction to Coding Theory,'', Chapman and Hall/CRC, (2005).   Google Scholar

[6]

J. Bierbrauer, G. Faina, M. Giulietti, S. Marcugini and F. Pambianco, The geometry of quantum codes,, Innov. Incidence Geom., 6 (2009), 53.   Google Scholar

[7]

J. Bierbrauer, S. Marcugini and F. Pambianco, The smallest size of a complete cap in $PG(3,7)$,, Discrete Math., 306 (2006), 1257.  doi: 10.1016/j.disc.2005.06.039.  Google Scholar

[8]

A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On size of complete caps in projective spaces $PG(n,q)$ and arcs in planes $PG(2,q)$,, J. Geom., 94 (2009), 31.  doi: 10.1007/s00022-009-0009-3.  Google Scholar

[9]

A. A. Davydov, S. Marcugini and F. Pambianco, Complete caps in projective spaces $PG(n,q)$,, J. Geom., 80 (2004), 23.  doi: 10.1007/s00022-004-1778-3.  Google Scholar

[10]

G. Faina and F. Pambianco, On the spectrum of the values $k$ for which a complete $k$-cap in $PG(n,q)$ exists,, J. Geom., 62 (1998), 84.  doi: 10.1007/BF01237602.  Google Scholar

[11]

M. Grassl, Bounds on the minimum distance of linear codes,, available online at \url{http://www.codetables.de}, ().   Google Scholar

[12]

R. Hill, Caps and codes,, Discrete Math., 22 (1978), 111.  doi: 10.1016/0012-365X(78)90120-6.  Google Scholar

[13]

S. Marcugini, A. Milani and F. Pambianco, Complete arcs in $PG(2,25)$: the spectrum of the sizes and the classification of the smallest complete arcs,, Discrete Math., 307 (2007), 739.  doi: 10.1016/j.disc.2005.11.094.  Google Scholar

[14]

F. Pambianco and L. Storme, Small complete caps in spaces of even characteristic,, J. Combin. Theory Ser. A, 75 (1996), 70.  doi: 10.1006/jcta.1996.0064.  Google Scholar

show all references

References:
[1]

D. Bartoli, "Quantum Codes and Related Geometric Properties,'', Ph.D thesis, (2008).   Google Scholar

[2]

D. Bartoli, J. Bierbrauer, S. Marcugini and F. Pambianco, Geometric constructions of quantum codes,, in, (2010), 149.   Google Scholar

[3]

D. Bartoli, S. Marcugini and F. Pambianco, A computer based classification of caps in $PG(3,4)$,, in, (2009).   Google Scholar

[4]

D. Bartoli, S. Marcugini and F. Pambianco, New quantum caps in $PG(4,4)$,, submitted., ().   Google Scholar

[5]

J. Bierbrauer, "Introduction to Coding Theory,'', Chapman and Hall/CRC, (2005).   Google Scholar

[6]

J. Bierbrauer, G. Faina, M. Giulietti, S. Marcugini and F. Pambianco, The geometry of quantum codes,, Innov. Incidence Geom., 6 (2009), 53.   Google Scholar

[7]

J. Bierbrauer, S. Marcugini and F. Pambianco, The smallest size of a complete cap in $PG(3,7)$,, Discrete Math., 306 (2006), 1257.  doi: 10.1016/j.disc.2005.06.039.  Google Scholar

[8]

A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On size of complete caps in projective spaces $PG(n,q)$ and arcs in planes $PG(2,q)$,, J. Geom., 94 (2009), 31.  doi: 10.1007/s00022-009-0009-3.  Google Scholar

[9]

A. A. Davydov, S. Marcugini and F. Pambianco, Complete caps in projective spaces $PG(n,q)$,, J. Geom., 80 (2004), 23.  doi: 10.1007/s00022-004-1778-3.  Google Scholar

[10]

G. Faina and F. Pambianco, On the spectrum of the values $k$ for which a complete $k$-cap in $PG(n,q)$ exists,, J. Geom., 62 (1998), 84.  doi: 10.1007/BF01237602.  Google Scholar

[11]

M. Grassl, Bounds on the minimum distance of linear codes,, available online at \url{http://www.codetables.de}, ().   Google Scholar

[12]

R. Hill, Caps and codes,, Discrete Math., 22 (1978), 111.  doi: 10.1016/0012-365X(78)90120-6.  Google Scholar

[13]

S. Marcugini, A. Milani and F. Pambianco, Complete arcs in $PG(2,25)$: the spectrum of the sizes and the classification of the smallest complete arcs,, Discrete Math., 307 (2007), 739.  doi: 10.1016/j.disc.2005.11.094.  Google Scholar

[14]

F. Pambianco and L. Storme, Small complete caps in spaces of even characteristic,, J. Combin. Theory Ser. A, 75 (1996), 70.  doi: 10.1006/jcta.1996.0064.  Google Scholar

[1]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[2]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[3]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[4]

Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523

[5]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[6]

Hui Ma, Dongxu Qi, Ruixia Song, Tianjun Wang. The complete orthogonal V-system and its applications. Communications on Pure & Applied Analysis, 2007, 6 (3) : 853-871. doi: 10.3934/cpaa.2007.6.853

[7]

Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847

[8]

Alexander Mielke. Complete-damage evolution based on energies and stresses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 423-439. doi: 10.3934/dcdss.2011.4.423

[9]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[10]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[11]

Jianbo Wang. Remarks on 5-dimensional complete intersections. Electronic Research Announcements, 2014, 21: 28-40. doi: 10.3934/era.2014.21.28

[12]

Paula Kemp. Characterizations of conditionally complete partially ordered sets. Conference Publications, 2005, 2005 (Special) : 505-509. doi: 10.3934/proc.2005.2005.505

[13]

Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659

[14]

J. C. Alvarez Paiva and E. Fernandes. Crofton formulas in projective Finsler spaces. Electronic Research Announcements, 1998, 4: 91-100.

[15]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[16]

Alex Castro, Wyatt Howard, Corey Shanbrom. Complete spelling rules for the Monster tower over three-space. Journal of Geometric Mechanics, 2017, 9 (3) : 317-333. doi: 10.3934/jgm.2017013

[17]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[18]

Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087

[19]

Alfonso C. Casal, Jesús Ildefonso Díaz, José Manuel Vegas. Complete recuperation after the blow up time for semilinear problems. Conference Publications, 2015, 2015 (special) : 223-229. doi: 10.3934/proc.2015.0223

[20]

J.-M. Deshouillers, G. Effinger, H. te Riele and D. Zinoviev. A complete Vinogradov 3-primes theorem under the Riemann hypothesis. Electronic Research Announcements, 1997, 3: 99-104.

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

[Back to Top]