-
Previous Article
$\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography
- AMC Home
- This Issue
- Next Article
Some new distance-4 constant weight codes
1. | Dept. of Math., Techn. Univ. Eindhoven, P. O. Box 513, 5600MB Eindhoven, Netherlands |
2. | Department of Computer Science, Technion, Haifa 32000 |
References:
[1] | |
[2] |
A. Betten, R. Laue and A. Wassermann, A Steiner 5-design on 36 points, Des. Codes Crypt., 17 (1999), 181-186.
doi: 10.1023/A:1026427226213. |
[3] |
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory, 36 (1990), 1334-1380.
doi: 10.1109/18.59932. |
[4] |
R. H. F. Denniston, Sylvester's problem of the 15 school-girls, Discr. Math., 9 (1974), 229-233.
doi: 10.1016/0012-365X(74)90004-1. |
[5] |
R. H. F. Denniston, Some new 5-designs, Bull. London Math. Soc., 8 (1976), 263-267.
doi: 10.1112/blms/8.3.263. |
[6] |
T. Etzion, Optimal partitions for triples, J. Combin. Theory (A), 59 (1992), 161-176.
doi: 10.1016/0097-3165(92)90062-Y. |
[7] |
T. Etzion, Partitions of triples into optimal packings, J. Combin. Theory (A), 59 (1992), 269-284.
doi: 10.1016/0097-3165(92)90069-7. |
[8] |
T. Etzion, Partitions for quadruples, Ars Combin., 36 (1993), 296-308. |
[9] |
T. Etzion and S. Bitan, On the chromatic number, colorings, and codes of the Johnson graph, Discr. Appl. Math., 70 (1996), 163-175.
doi: 10.1016/0166-218X(96)00104-7. |
[10] |
T. Etzion and P. R. J. Östergård, Greedy and heuristic algorithms for codes and colorings, IEEE Trans. Inform. Theory, 44 (1998), 382-388.
doi: 10.1109/18.651069. |
[11] |
T. Etzion and C. L. M. van Pul, New lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 35 (1989), 1324-1329.
doi: 10.1109/18.45293. |
[12] |
R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
doi: 10.1109/TIT.1980.1056141. |
[13] |
L. J. Ji, A new existence proof for large sets of disjoint Steiner triple systems, J. Combin. Theory (A), 112 (2005), 308-327.
doi: 10.1016/j.jcta.2005.06.005. |
[14] |
L. J. Ji, Partition of triples of order $6k+5$ into $6k+3$ optimal packings and one packing of size $8k+4$, Graphs Combin., 22 (2006), 251-260.
doi: 10.1007/s00373-005-0632-1. |
[15] |
J. X. Lu, On large sets of disjoint Steiner triple systems I, II, III, J. Combin. Theory (A), 34 (1983), 140-146, 147-155, 156-183, and IV, V, VI, ibid., 37 (1984), 136-163, 164-188, 189-192. |
[16] |
N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems $S(3,4,14)$ and $S(4,5,15)$, Utilitas Math., 1 (1972), 5-95. |
[17] |
K. J. Nurmela, M. K. Kaikkonen and P. R. J. Östergård, New constant weight codes from linear permutation groups, IEEE Trans. Inform. Theory, 43 (1997), 1623-1630,
doi: 10.1109/18.623163. |
[18] |
D. H. Smith, L. A. Hughes and S. Perkins, A new table of constant weight codes of length greater than 28, Electronic J. Combin., 13 (2006), #A2. |
[19] |
L. Teirlinck, A completion of Lu's determination of the spectrum of large sets of disjoint Steiner Triple systems, J. Combin. Theory (A), 57 (1991), 302-305.
doi: 10.1016/0097-3165(91)90053-J. |
show all references
References:
[1] | |
[2] |
A. Betten, R. Laue and A. Wassermann, A Steiner 5-design on 36 points, Des. Codes Crypt., 17 (1999), 181-186.
doi: 10.1023/A:1026427226213. |
[3] |
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory, 36 (1990), 1334-1380.
doi: 10.1109/18.59932. |
[4] |
R. H. F. Denniston, Sylvester's problem of the 15 school-girls, Discr. Math., 9 (1974), 229-233.
doi: 10.1016/0012-365X(74)90004-1. |
[5] |
R. H. F. Denniston, Some new 5-designs, Bull. London Math. Soc., 8 (1976), 263-267.
doi: 10.1112/blms/8.3.263. |
[6] |
T. Etzion, Optimal partitions for triples, J. Combin. Theory (A), 59 (1992), 161-176.
doi: 10.1016/0097-3165(92)90062-Y. |
[7] |
T. Etzion, Partitions of triples into optimal packings, J. Combin. Theory (A), 59 (1992), 269-284.
doi: 10.1016/0097-3165(92)90069-7. |
[8] |
T. Etzion, Partitions for quadruples, Ars Combin., 36 (1993), 296-308. |
[9] |
T. Etzion and S. Bitan, On the chromatic number, colorings, and codes of the Johnson graph, Discr. Appl. Math., 70 (1996), 163-175.
doi: 10.1016/0166-218X(96)00104-7. |
[10] |
T. Etzion and P. R. J. Östergård, Greedy and heuristic algorithms for codes and colorings, IEEE Trans. Inform. Theory, 44 (1998), 382-388.
doi: 10.1109/18.651069. |
[11] |
T. Etzion and C. L. M. van Pul, New lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 35 (1989), 1324-1329.
doi: 10.1109/18.45293. |
[12] |
R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
doi: 10.1109/TIT.1980.1056141. |
[13] |
L. J. Ji, A new existence proof for large sets of disjoint Steiner triple systems, J. Combin. Theory (A), 112 (2005), 308-327.
doi: 10.1016/j.jcta.2005.06.005. |
[14] |
L. J. Ji, Partition of triples of order $6k+5$ into $6k+3$ optimal packings and one packing of size $8k+4$, Graphs Combin., 22 (2006), 251-260.
doi: 10.1007/s00373-005-0632-1. |
[15] |
J. X. Lu, On large sets of disjoint Steiner triple systems I, II, III, J. Combin. Theory (A), 34 (1983), 140-146, 147-155, 156-183, and IV, V, VI, ibid., 37 (1984), 136-163, 164-188, 189-192. |
[16] |
N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems $S(3,4,14)$ and $S(4,5,15)$, Utilitas Math., 1 (1972), 5-95. |
[17] |
K. J. Nurmela, M. K. Kaikkonen and P. R. J. Östergård, New constant weight codes from linear permutation groups, IEEE Trans. Inform. Theory, 43 (1997), 1623-1630,
doi: 10.1109/18.623163. |
[18] |
D. H. Smith, L. A. Hughes and S. Perkins, A new table of constant weight codes of length greater than 28, Electronic J. Combin., 13 (2006), #A2. |
[19] |
L. Teirlinck, A completion of Lu's determination of the spectrum of large sets of disjoint Steiner Triple systems, J. Combin. Theory (A), 57 (1991), 302-305.
doi: 10.1016/0097-3165(91)90053-J. |
[1] |
Denis S. Krotov, Patric R. J. Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013 |
[2] |
Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423 |
[3] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[4] |
Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $ \bf{333} $ in the setting of a binary $ \bf{q} $-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029 |
[5] |
Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333 |
[6] |
Joe Gildea, Adrian Korban, Adam M. Roberts, Alexander Tylyshchak. Binary self-dual codes of various lengths with new weight enumerators from a modified bordered construction and neighbours. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022021 |
[7] |
María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021018 |
[8] |
Liying Pan, R. Julian R. Abel, Jinhua Wang. Constructions of optimal multiply constant-weight codes MCWC$ (3,n_1;1,n_2;1,n_3;8)s $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022025 |
[9] |
Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 |
[10] |
Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 |
[11] |
Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 |
[12] |
Andrea Seidl, Stefan Wrzaczek. Opening the source code: The threat of forking. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022010 |
[13] |
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 |
[14] |
Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 |
[15] |
Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889 |
[16] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[17] |
Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 |
[18] |
Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082 |
[19] |
Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403 |
[20] |
Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]