\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some new distance-4 constant weight codes

Abstract Related Papers Cited by
  • Improved binary constant weight codes with minimum distance 4 are constructed. A table with bounds on the chromatic number of small Johnson graphs is given.
    Mathematics Subject Classification: Primary: 94B60; Secondary: 05E30, 05C15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]
    [2]

    A. Betten, R. Laue and A. Wassermann, A Steiner 5-design on 36 points, Des. Codes Crypt., 17 (1999), 181-186.doi: 10.1023/A:1026427226213.

    [3]

    A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory, 36 (1990), 1334-1380.doi: 10.1109/18.59932.

    [4]

    R. H. F. Denniston, Sylvester's problem of the 15 school-girls, Discr. Math., 9 (1974), 229-233.doi: 10.1016/0012-365X(74)90004-1.

    [5]

    R. H. F. Denniston, Some new 5-designs, Bull. London Math. Soc., 8 (1976), 263-267.doi: 10.1112/blms/8.3.263.

    [6]

    T. Etzion, Optimal partitions for triples, J. Combin. Theory (A), 59 (1992), 161-176.doi: 10.1016/0097-3165(92)90062-Y.

    [7]

    T. Etzion, Partitions of triples into optimal packings, J. Combin. Theory (A), 59 (1992), 269-284.doi: 10.1016/0097-3165(92)90069-7.

    [8]

    T. Etzion, Partitions for quadruples, Ars Combin., 36 (1993), 296-308.

    [9]

    T. Etzion and S. Bitan, On the chromatic number, colorings, and codes of the Johnson graph, Discr. Appl. Math., 70 (1996), 163-175.doi: 10.1016/0166-218X(96)00104-7.

    [10]

    T. Etzion and P. R. J. Östergård, Greedy and heuristic algorithms for codes and colorings, IEEE Trans. Inform. Theory, 44 (1998), 382-388.doi: 10.1109/18.651069.

    [11]

    T. Etzion and C. L. M. van Pul, New lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 35 (1989), 1324-1329.doi: 10.1109/18.45293.

    [12]

    R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.doi: 10.1109/TIT.1980.1056141.

    [13]

    L. J. Ji, A new existence proof for large sets of disjoint Steiner triple systems, J. Combin. Theory (A), 112 (2005), 308-327.doi: 10.1016/j.jcta.2005.06.005.

    [14]

    L. J. Ji, Partition of triples of order $6k+5$ into $6k+3$ optimal packings and one packing of size $8k+4$, Graphs Combin., 22 (2006), 251-260.doi: 10.1007/s00373-005-0632-1.

    [15]

    J. X. Lu, On large sets of disjoint Steiner triple systems I, II, III, J. Combin. Theory (A), 34 (1983), 140-146, 147-155, 156-183, and IV, V, VI, ibid., 37 (1984), 136-163, 164-188, 189-192.

    [16]

    N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems $S(3,4,14)$ and $S(4,5,15)$, Utilitas Math., 1 (1972), 5-95.

    [17]

    K. J. Nurmela, M. K. Kaikkonen and P. R. J. Östergård, New constant weight codes from linear permutation groups, IEEE Trans. Inform. Theory, 43 (1997), 1623-1630,doi: 10.1109/18.623163.

    [18]

    D. H. Smith, L. A. Hughes and S. Perkins, A new table of constant weight codes of length greater than 28, Electronic J. Combin., 13 (2006), #A2.

    [19]

    L. Teirlinck, A completion of Lu's determination of the spectrum of large sets of disjoint Steiner Triple systems, J. Combin. Theory (A), 57 (1991), 302-305.doi: 10.1016/0097-3165(91)90053-J.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return