August  2011, 5(3): 435-448. doi: 10.3934/amc.2011.5.435

On the degrees of freedom of Costas permutations and other constraints

1. 

School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4

Received  May 2010 Revised  January 2011 Published  August 2011

The number of degrees of freedom of Costas permutations is considered, and found to be surprisingly small, while partial results about the degrees of freedom of Golomb and Welch Costas permutations are proved. For Golomb Costas permutations, in particular, the curious observation is made that arbitrarily long sequences of distinct positive integers seem to exist, with the property that two or more Golomb Costas permutations, constructed in a suitably large field, start with such a sequence; other types of constraints, related to their cycle structure, are studied; and finally it is shown that, in any extension field containing non-quadratic subfields, Lempel Costas permutations are obtainable through the iterated composition of other Golomb Costas permutations.
Citation: Konstantinos Drakakis. On the degrees of freedom of Costas permutations and other constraints. Advances in Mathematics of Communications, 2011, 5 (3) : 435-448. doi: 10.3934/amc.2011.5.435
References:
[1]

J. K. Beard, Generating Costas Arrays to Order 200,, in, (2006).   Google Scholar

[2]

J. K. Beard, Announcement in Conference on Information Sciences and Systems, (CISS) 2010., (2010).   Google Scholar

[3]

C. A. Charalambides, "Enumerative Combinatorics,'', Chapman & Hall/CRC, (2002).   Google Scholar

[4]

J. P. Costas, Medium constraints on sonar design and performance,, Technical Report Class 1 Rep. R65EMH33, (1965).   Google Scholar

[5]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties,, Proc. IEEE, 72 (1984), 996.  doi: 10.1109/PROC.1984.12967.  Google Scholar

[6]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 ().   Google Scholar

[7]

K. Drakakis, A review of the available construction methods for Golomb rulers,, Adv. Math. Commun., 3 (2009), 235.  doi: 10.3934/amc.2009.3.235.  Google Scholar

[8]

K. Drakakis, R. Gow and L. O'Carroll, On the symmetry of Welch- and Golomb-constructed Costas arrays,, Disc. Math., 309 (2009), 2559.  doi: 10.1016/j.disc.2008.04.058.  Google Scholar

[9]

K. Drakakis, R. Gow and S. Rickard, On the disjointness of algebraically constructed Costas arrays,, J. Algebra Appl., 10 (2011), 219.  doi: 10.1142/S0219498811004537.  Google Scholar

[10]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28,, Adv. Math. Commun., 5 (2011), 69.  doi: 10.3934/amc.2011.5.69.  Google Scholar

[11]

K. Drakakis, F. Iorio, S. Rickard and J. Walsh, Results of the enumeration of Costas arrays of order 29,, Adv. Math. Commun., 5 (2011), 547.   Google Scholar

[12]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27,, IEEE Trans. Inform. Theory, 54 (2008), 4684.  doi: 10.1109/TIT.2008.928979.  Google Scholar

[13]

S. Golomb, Algebraic constructions for Costas arrays,, J. Combin. Theory Ser. A, 37 (1984), 13.  doi: 10.1016/0097-3165(84)90015-3.  Google Scholar

[14]

S. Golomb and G. Gong, The status of Costas arrays,, IEEE Trans. Inform. Theory, 53 (2007), 4260.  doi: 10.1109/TIT.2007.907524.  Google Scholar

[15]

S. Golomb and H. Taylor, Constructions and properties of Costas arrays,, Proc. IEEE, 72 (1984), 1143.  doi: 10.1109/PROC.1984.12994.  Google Scholar

[16]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,'' 6th edition,, Clarendon Press, (2008).   Google Scholar

[17]

P. Ribenboim, "The New Book of Prime Number Records,'' 3rd edition,, Springer-Verlag, (1995).   Google Scholar

[18]

J. Silverman, V. Vickers and J. Mooney, On the number of Costas arrays as a function of array size,, Proc. IEEE, 76 (1988), 851.  doi: 10.1109/5.7156.  Google Scholar

show all references

References:
[1]

J. K. Beard, Generating Costas Arrays to Order 200,, in, (2006).   Google Scholar

[2]

J. K. Beard, Announcement in Conference on Information Sciences and Systems, (CISS) 2010., (2010).   Google Scholar

[3]

C. A. Charalambides, "Enumerative Combinatorics,'', Chapman & Hall/CRC, (2002).   Google Scholar

[4]

J. P. Costas, Medium constraints on sonar design and performance,, Technical Report Class 1 Rep. R65EMH33, (1965).   Google Scholar

[5]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties,, Proc. IEEE, 72 (1984), 996.  doi: 10.1109/PROC.1984.12967.  Google Scholar

[6]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 ().   Google Scholar

[7]

K. Drakakis, A review of the available construction methods for Golomb rulers,, Adv. Math. Commun., 3 (2009), 235.  doi: 10.3934/amc.2009.3.235.  Google Scholar

[8]

K. Drakakis, R. Gow and L. O'Carroll, On the symmetry of Welch- and Golomb-constructed Costas arrays,, Disc. Math., 309 (2009), 2559.  doi: 10.1016/j.disc.2008.04.058.  Google Scholar

[9]

K. Drakakis, R. Gow and S. Rickard, On the disjointness of algebraically constructed Costas arrays,, J. Algebra Appl., 10 (2011), 219.  doi: 10.1142/S0219498811004537.  Google Scholar

[10]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28,, Adv. Math. Commun., 5 (2011), 69.  doi: 10.3934/amc.2011.5.69.  Google Scholar

[11]

K. Drakakis, F. Iorio, S. Rickard and J. Walsh, Results of the enumeration of Costas arrays of order 29,, Adv. Math. Commun., 5 (2011), 547.   Google Scholar

[12]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27,, IEEE Trans. Inform. Theory, 54 (2008), 4684.  doi: 10.1109/TIT.2008.928979.  Google Scholar

[13]

S. Golomb, Algebraic constructions for Costas arrays,, J. Combin. Theory Ser. A, 37 (1984), 13.  doi: 10.1016/0097-3165(84)90015-3.  Google Scholar

[14]

S. Golomb and G. Gong, The status of Costas arrays,, IEEE Trans. Inform. Theory, 53 (2007), 4260.  doi: 10.1109/TIT.2007.907524.  Google Scholar

[15]

S. Golomb and H. Taylor, Constructions and properties of Costas arrays,, Proc. IEEE, 72 (1984), 1143.  doi: 10.1109/PROC.1984.12994.  Google Scholar

[16]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,'' 6th edition,, Clarendon Press, (2008).   Google Scholar

[17]

P. Ribenboim, "The New Book of Prime Number Records,'' 3rd edition,, Springer-Verlag, (1995).   Google Scholar

[18]

J. Silverman, V. Vickers and J. Mooney, On the number of Costas arrays as a function of array size,, Proc. IEEE, 76 (1988), 851.  doi: 10.1109/5.7156.  Google Scholar

[1]

Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321

[2]

Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241

[3]

Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423

[4]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[5]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547

[6]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69

[7]

Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049

[8]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[9]

Guowei Yu. Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4769-4793. doi: 10.3934/dcds.2013.33.4769

[10]

Luca Biasco, Luigi Chierchia. On the stability of some properly--degenerate Hamiltonian systems with two degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 233-262. doi: 10.3934/dcds.2003.9.233

[11]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[12]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[13]

Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

[14]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[15]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[16]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[17]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[18]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[19]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[20]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]