August  2011, 5(3): 435-448. doi: 10.3934/amc.2011.5.435

On the degrees of freedom of Costas permutations and other constraints

1. 

School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4

Received  May 2010 Revised  January 2011 Published  August 2011

The number of degrees of freedom of Costas permutations is considered, and found to be surprisingly small, while partial results about the degrees of freedom of Golomb and Welch Costas permutations are proved. For Golomb Costas permutations, in particular, the curious observation is made that arbitrarily long sequences of distinct positive integers seem to exist, with the property that two or more Golomb Costas permutations, constructed in a suitably large field, start with such a sequence; other types of constraints, related to their cycle structure, are studied; and finally it is shown that, in any extension field containing non-quadratic subfields, Lempel Costas permutations are obtainable through the iterated composition of other Golomb Costas permutations.
Citation: Konstantinos Drakakis. On the degrees of freedom of Costas permutations and other constraints. Advances in Mathematics of Communications, 2011, 5 (3) : 435-448. doi: 10.3934/amc.2011.5.435
References:
[1]

J. K. Beard, Generating Costas Arrays to Order 200, in "Conference on Information Sciences and Systems (CISS) 2006''; availabl online at http://jameskbeard.com/jameskbeard/

[2]

J. K. Beard, Announcement in Conference on Information Sciences and Systems (CISS) 2010.

[3]

C. A. Charalambides, "Enumerative Combinatorics,'' Chapman & Hall/CRC, 2002.

[4]

J. P. Costas, Medium constraints on sonar design and performance, Technical Report Class 1 Rep. R65EMH33, GE Co., 1965.

[5]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties, Proc. IEEE, 72 (1984), 996-1009. doi: 10.1109/PROC.1984.12967.

[6]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 (). 

[7]

K. Drakakis, A review of the available construction methods for Golomb rulers, Adv. Math. Commun., 3 (2009), 235-250. doi: 10.3934/amc.2009.3.235.

[8]

K. Drakakis, R. Gow and L. O'Carroll, On the symmetry of Welch- and Golomb-constructed Costas arrays, Disc. Math., 309 (2009), 2559-2563. doi: 10.1016/j.disc.2008.04.058.

[9]

K. Drakakis, R. Gow and S. Rickard, On the disjointness of algebraically constructed Costas arrays, J. Algebra Appl., 10 (2011), 219-240. doi: 10.1142/S0219498811004537.

[10]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28, Adv. Math. Commun., 5 (2011), 69-86. doi: 10.3934/amc.2011.5.69.

[11]

K. Drakakis, F. Iorio, S. Rickard and J. Walsh, Results of the enumeration of Costas arrays of order 29, Adv. Math. Commun., 5 (2011), 547-553.

[12]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27, IEEE Trans. Inform. Theory, 54 (2008), 4684-4687. doi: 10.1109/TIT.2008.928979.

[13]

S. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3.

[14]

S. Golomb and G. Gong, The status of Costas arrays, IEEE Trans. Inform. Theory, 53 (2007), 4260-4265. doi: 10.1109/TIT.2007.907524.

[15]

S. Golomb and H. Taylor, Constructions and properties of Costas arrays, Proc. IEEE, 72 (1984), 1143-1163. doi: 10.1109/PROC.1984.12994.

[16]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,'' 6th edition, Clarendon Press, Oxford, 2008.

[17]

P. Ribenboim, "The New Book of Prime Number Records,'' 3rd edition, Springer-Verlag, New York, 1995.

[18]

J. Silverman, V. Vickers and J. Mooney, On the number of Costas arrays as a function of array size, Proc. IEEE, 76 (1988), 851-853. doi: 10.1109/5.7156.

show all references

References:
[1]

J. K. Beard, Generating Costas Arrays to Order 200, in "Conference on Information Sciences and Systems (CISS) 2006''; availabl online at http://jameskbeard.com/jameskbeard/

[2]

J. K. Beard, Announcement in Conference on Information Sciences and Systems (CISS) 2010.

[3]

C. A. Charalambides, "Enumerative Combinatorics,'' Chapman & Hall/CRC, 2002.

[4]

J. P. Costas, Medium constraints on sonar design and performance, Technical Report Class 1 Rep. R65EMH33, GE Co., 1965.

[5]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties, Proc. IEEE, 72 (1984), 996-1009. doi: 10.1109/PROC.1984.12967.

[6]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 (). 

[7]

K. Drakakis, A review of the available construction methods for Golomb rulers, Adv. Math. Commun., 3 (2009), 235-250. doi: 10.3934/amc.2009.3.235.

[8]

K. Drakakis, R. Gow and L. O'Carroll, On the symmetry of Welch- and Golomb-constructed Costas arrays, Disc. Math., 309 (2009), 2559-2563. doi: 10.1016/j.disc.2008.04.058.

[9]

K. Drakakis, R. Gow and S. Rickard, On the disjointness of algebraically constructed Costas arrays, J. Algebra Appl., 10 (2011), 219-240. doi: 10.1142/S0219498811004537.

[10]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28, Adv. Math. Commun., 5 (2011), 69-86. doi: 10.3934/amc.2011.5.69.

[11]

K. Drakakis, F. Iorio, S. Rickard and J. Walsh, Results of the enumeration of Costas arrays of order 29, Adv. Math. Commun., 5 (2011), 547-553.

[12]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27, IEEE Trans. Inform. Theory, 54 (2008), 4684-4687. doi: 10.1109/TIT.2008.928979.

[13]

S. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3.

[14]

S. Golomb and G. Gong, The status of Costas arrays, IEEE Trans. Inform. Theory, 53 (2007), 4260-4265. doi: 10.1109/TIT.2007.907524.

[15]

S. Golomb and H. Taylor, Constructions and properties of Costas arrays, Proc. IEEE, 72 (1984), 1143-1163. doi: 10.1109/PROC.1984.12994.

[16]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,'' 6th edition, Clarendon Press, Oxford, 2008.

[17]

P. Ribenboim, "The New Book of Prime Number Records,'' 3rd edition, Springer-Verlag, New York, 1995.

[18]

J. Silverman, V. Vickers and J. Mooney, On the number of Costas arrays as a function of array size, Proc. IEEE, 76 (1988), 851-853. doi: 10.1109/5.7156.

[1]

Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321

[2]

Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241

[3]

Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423

[4]

Luca Biasco, Luigi Chierchia. On the measure of KAM tori in two degrees of freedom. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6635-6648. doi: 10.3934/dcds.2020134

[5]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[6]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547

[7]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69

[8]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[9]

Guowei Yu. Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4769-4793. doi: 10.3934/dcds.2013.33.4769

[10]

Luca Biasco, Luigi Chierchia. On the stability of some properly--degenerate Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 233-262. doi: 10.3934/dcds.2003.9.233

[11]

Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049

[12]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[13]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[14]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[15]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[16]

Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

[17]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[18]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[19]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[20]

Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]