August  2011, 5(3): 489-504. doi: 10.3934/amc.2011.5.489

On the order bounds for one-point AG codes

1. 

Department of Mathematical Sciences, Aalborg University, Fr. Bajersvej 7G, 9220 Aalborg Øst, Denmark

2. 

Department of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47014 Valladolid, Castilla, Spain

3. 

Department of Mathematical Sciences, Aalborg University, Fr. Bajersvej 7G, 9220-Aalborg Øst, Denmark

4. 

Institute of Mathematics, Statistics and Computer Science, P.O. Box 6065, University of Campinas, 13083-970, Campinas, SP, Brazil

Received  November 2010 Revised  November 2010 Published  August 2011

The order bound for the minimum distance of algebraic geometry codes was originally defined for the duals of one-point codes and later generalized for arbitrary algebraic geometry codes. Another bound of order type for the minimum distance of general linear codes, and for codes from order domains in particular, was given in [1]. Here we investigate in detail the application of that bound to one-point algebraic geometry codes, obtaining a bound d* for the minimum distance of these codes. We establish a connection between d* and the order bound and its generalizations. We also study the improved code constructions based on d*. Finally we extend d* to all generalized Hamming weights.
Citation: Olav Geil, Carlos Munuera, Diego Ruano, Fernando Torres. On the order bounds for one-point AG codes. Advances in Mathematics of Communications, 2011, 5 (3) : 489-504. doi: 10.3934/amc.2011.5.489
References:
[1]

H. Andersen and O. Geil, Evaluation codes from order domain theory,, Finite Fields Appl., 14 (2008), 92.  doi: 10.1016/j.ffa.2006.12.004.  Google Scholar

[2]

P. Beelen, The order bound for general algebraic geometric codes,, Finite Fields Appl., 13 (2007), 665.  doi: 10.1016/j.ffa.2006.09.006.  Google Scholar

[3]

I. Duursma, Algebraic geometry codes: general theory,, in, (2008), 1.   Google Scholar

[4]

I. Duursma and R. Kirov, An extension of the order bound for AG codes,, in, (2009), 11.   Google Scholar

[5]

I. Duursma, R. Kirov and S. Park, Distance bounds for algebraic geometric codes,, preprint, ().   Google Scholar

[6]

I. Duursma and S. Park, Coset bounds for algebraic geometric codes,, Finite Fields Appl., 16 (2010), 36.  doi: 10.1016/j.ffa.2009.11.006.  Google Scholar

[7]

G. L. Feng and T. N. T. Rao, Improved geometric Goppa codes. Part I: basic theory,, IEEE Trans. Inform. Theory, 41 (1995), 1678.  doi: 10.1109/18.476241.  Google Scholar

[8]

J. Hansen, Codes on the Klein quartic, ideals, and decoding,, IEEE Trans. Inform. Theory, 33 (1987), 923.  doi: 10.1109/TIT.1987.1057365.  Google Scholar

[9]

P. Heijnen and R. Pellikaan, Generalized Hamming weights of $q$-ary Reed-Muller codes,, IEEE Trans. Inform. Theory, 44 (1998), 181.  doi: 10.1109/18.651015.  Google Scholar

[10]

T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes,, in, (1998), 871.   Google Scholar

[11]

C. Munuera, Generalized Hamming weights and trellis complexity,, in, (2008), 363.   Google Scholar

[12]

C. Munuera and R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors,, J. Pure Appl. Algebra, 90 (1993), 229.  doi: 10.1016/0022-4049(93)90043-S.  Google Scholar

[13]

C. Munuera, A. Sepúlveda and F. Torres, Algebraic geometry codes from Castle curves,, in, (2008), 117.  doi: 10.1007/978-3-540-87448-5_13.  Google Scholar

[14]

H. Stichtenoth, "Algebraic Function Fields and Codes,'', Springer, (1993).   Google Scholar

show all references

References:
[1]

H. Andersen and O. Geil, Evaluation codes from order domain theory,, Finite Fields Appl., 14 (2008), 92.  doi: 10.1016/j.ffa.2006.12.004.  Google Scholar

[2]

P. Beelen, The order bound for general algebraic geometric codes,, Finite Fields Appl., 13 (2007), 665.  doi: 10.1016/j.ffa.2006.09.006.  Google Scholar

[3]

I. Duursma, Algebraic geometry codes: general theory,, in, (2008), 1.   Google Scholar

[4]

I. Duursma and R. Kirov, An extension of the order bound for AG codes,, in, (2009), 11.   Google Scholar

[5]

I. Duursma, R. Kirov and S. Park, Distance bounds for algebraic geometric codes,, preprint, ().   Google Scholar

[6]

I. Duursma and S. Park, Coset bounds for algebraic geometric codes,, Finite Fields Appl., 16 (2010), 36.  doi: 10.1016/j.ffa.2009.11.006.  Google Scholar

[7]

G. L. Feng and T. N. T. Rao, Improved geometric Goppa codes. Part I: basic theory,, IEEE Trans. Inform. Theory, 41 (1995), 1678.  doi: 10.1109/18.476241.  Google Scholar

[8]

J. Hansen, Codes on the Klein quartic, ideals, and decoding,, IEEE Trans. Inform. Theory, 33 (1987), 923.  doi: 10.1109/TIT.1987.1057365.  Google Scholar

[9]

P. Heijnen and R. Pellikaan, Generalized Hamming weights of $q$-ary Reed-Muller codes,, IEEE Trans. Inform. Theory, 44 (1998), 181.  doi: 10.1109/18.651015.  Google Scholar

[10]

T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes,, in, (1998), 871.   Google Scholar

[11]

C. Munuera, Generalized Hamming weights and trellis complexity,, in, (2008), 363.   Google Scholar

[12]

C. Munuera and R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors,, J. Pure Appl. Algebra, 90 (1993), 229.  doi: 10.1016/0022-4049(93)90043-S.  Google Scholar

[13]

C. Munuera, A. Sepúlveda and F. Torres, Algebraic geometry codes from Castle curves,, in, (2008), 117.  doi: 10.1007/978-3-540-87448-5_13.  Google Scholar

[14]

H. Stichtenoth, "Algebraic Function Fields and Codes,'', Springer, (1993).   Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[3]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[10]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[11]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[15]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[16]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[17]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[18]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[19]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (25)

[Back to Top]