August  2011, 5(3): 547-553. doi: 10.3934/amc.2011.5.547

Results of the enumeration of Costas arrays of order 29

1. 

School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4

2. 

Autodesk Research, 210 King Street East, Toronto, Ontario M5A 1J7

3. 

Department of Computer Science, Trinity College Dublin, College Green, Dublin 2, Ireland

Received  January 2011 Published  August 2011

The results of the enumeration of Costas arrays of order 29 are presented: except for 16 arrays out of a total of 164, all other arrays found are accounted for by the Golomb and Welch construction methods. These 16 arrays, however, cannot be considered to be new, as they were discovered in the past through a semi-empirical technique. The enumeration was performed on several computer clusters and required the equivalent of 366.55 years of single CPU time.
Citation: Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547
References:
[1]

J. P. Costas, Medium constraints on SONAR design and performance,, in, (1975).   Google Scholar

[2]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties,, Proc. IEEE, 72 (1984), 996.  doi: 10.1109/PROC.1984.12967.  Google Scholar

[3]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 ().   Google Scholar

[4]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28 and its consequences,, Adv. Math. Commun., 5 (2011), 69.  doi: 10.3934/amc.2011.5.69.  Google Scholar

[5]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27,, IEEE Trans. Inform. Theory, 54 (2008), 4684.  doi: 10.1109/TIT.2008.928979.  Google Scholar

[6]

S. W. Golomb, Algebraic constructions for Costas arrays,, J. Combin. Theory Ser. A, 37 (1984), 13.  doi: 10.1016/0097-3165(84)90015-3.  Google Scholar

[7]

S. W. Golomb, The $T_4$ and $G_4$ constructions for Costas arrays,, IEEE Trans. Inform. Theory, 38 (1992), 1404.  doi: 10.1109/18.144726.  Google Scholar

[8]

S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays,, Proc. IEEE, 72 (1984), 1143.  doi: 10.1109/PROC.1984.12994.  Google Scholar

[9]

S. Rickard, Searching for Costas arrays using periodicity properties,, in, (2004).   Google Scholar

show all references

References:
[1]

J. P. Costas, Medium constraints on SONAR design and performance,, in, (1975).   Google Scholar

[2]

J. P. Costas, A study of detection waveforms having nearly ideal range-doppler ambiguity properties,, Proc. IEEE, 72 (1984), 996.  doi: 10.1109/PROC.1984.12967.  Google Scholar

[3]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., 2006 ().   Google Scholar

[4]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28 and its consequences,, Adv. Math. Commun., 5 (2011), 69.  doi: 10.3934/amc.2011.5.69.  Google Scholar

[5]

K. Drakakis, S. Rickard, J. Beard, R. Caballero, F. Iorio, G. O'Brien and J. Walsh, Results of the enumeration of Costas arrays of order 27,, IEEE Trans. Inform. Theory, 54 (2008), 4684.  doi: 10.1109/TIT.2008.928979.  Google Scholar

[6]

S. W. Golomb, Algebraic constructions for Costas arrays,, J. Combin. Theory Ser. A, 37 (1984), 13.  doi: 10.1016/0097-3165(84)90015-3.  Google Scholar

[7]

S. W. Golomb, The $T_4$ and $G_4$ constructions for Costas arrays,, IEEE Trans. Inform. Theory, 38 (1992), 1404.  doi: 10.1109/18.144726.  Google Scholar

[8]

S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays,, Proc. IEEE, 72 (1984), 1143.  doi: 10.1109/PROC.1984.12994.  Google Scholar

[9]

S. Rickard, Searching for Costas arrays using periodicity properties,, in, (2004).   Google Scholar

[1]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69

[2]

Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241

[3]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[4]

Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321

[5]

Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic & Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417

[6]

Min Tang. Second order all speed method for the isentropic Euler equations. Kinetic & Related Models, 2012, 5 (1) : 155-184. doi: 10.3934/krm.2012.5.155

[7]

Yong Li, Catalin Trenchea. Partitioned second order method for magnetohydrodynamics in Elsässer variables. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2803-2823. doi: 10.3934/dcdsb.2018106

[8]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019115

[9]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[10]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[11]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[12]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[13]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[14]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[15]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[16]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[17]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[18]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[19]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[20]

Andrea L. Bertozzi, Ning Ju, Hsiang-Wei Lu. A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1367-1391. doi: 10.3934/dcds.2011.29.1367

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (8)

[Back to Top]