November  2011, 5(4): 571-588. doi: 10.3934/amc.2011.5.571

Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes

1. 

Department of Mathematics, University of Scranton, Scranton, PA 18510, United States

2. 

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain

Received  March 2010 Revised  October 2011 Published  November 2011

The generalized Gray map is defined for codes over $\mathbb{Z}_{2^k}$. We give bounds for the dimension of the kernel and the rank of the image of a code over $\mathbb{Z}_{2^k}$ with a given type and show that there exists such a code for each dimension in the interval for the kernel. We determine when the Gray image of a code over $\mathbb{Z}_{2^k}$ generates a linear self-dual code and give families of codes whose image generate binary self-dual codes. We investigate the Gray image of quaternary self-dual codes and examine when the Gray image of a self-dual code over $\mathbb{Z}_4$ is a binary self-dual code.
Citation: Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571
References:
[1]

E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings,, IEEE Trans. Inform. Theory, 45 (1999), 1194.  doi: 10.1109/18.761269.  Google Scholar

[2]

M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$,, Designs Codes Crypt., 61 (2011), 31.  doi: 10.1007/s10623-010-9437-1.  Google Scholar

[3]

J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code,, in, 10 (2001).   Google Scholar

[4]

J. Borges, C. Fernández and J. Rifà, Propelinear structure of $\mathbbZ$2k-linear codes,, preprint, ().   Google Scholar

[5]

C. Carlet, $\mathbbZ$2k-linear codes,, IEEE Trans. Inform. Theory, 44 (1998), 1543.  doi: 10.1109/18.681328.  Google Scholar

[6]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4,, J. Combin. Theory Ser. A, 62 (1993), 30.  doi: 10.1016/0097-3165(93)90070-O.  Google Scholar

[7]

S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$,, Finite Fields Appl., 7 (2001), 507.  doi: 10.1006/ffta.2000.0312.  Google Scholar

[8]

S. T. Dougherty and H. Liu, Independence of vectors in codes over rings,, Designs Codes Crypt., 51 (2009), 55.  doi: 10.1007/s10623-008-9243-1.  Google Scholar

[9]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes,, in, (2008), 46.   Google Scholar

[10]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel,, Designs Codes Crypt., 56 (2010), 43.  doi: 10.1007/s10623-009-9340-9.  Google Scholar

[11]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[12]

M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4,, Arch. Math., 53 (1989), 201.  doi: 10.1007/BF01198572.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland, (1977).   Google Scholar

[14]

Y. H. Park, Modular independence and generator matrices for codes over $Z_m$,, Designs Codes Crypt., 50 (2009), 147.  doi: 10.1007/s10623-008-9220-8.  Google Scholar

[15]

V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'', North-Holland, (1998).   Google Scholar

[16]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[17]

K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$,, Linear Algebra Appl. \textbf{295} (1999), 295 (1999), 191.  doi: 10.1016/S0024-3795(99)00125-1.  Google Scholar

[18]

H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes,, SIAM J. Discrete Math., 17 (2003), 103.  doi: 10.1137/S0895480101397219.  Google Scholar

[19]

Z.-X. Wan, "Quaternary Codes,'', World Scientific, (1997).  doi: 10.1142/9789812798121.  Google Scholar

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory,, American J. Math., 121 (1999), 555.  doi: 10.1353/ajm.1999.0024.  Google Scholar

show all references

References:
[1]

E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings,, IEEE Trans. Inform. Theory, 45 (1999), 1194.  doi: 10.1109/18.761269.  Google Scholar

[2]

M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$,, Designs Codes Crypt., 61 (2011), 31.  doi: 10.1007/s10623-010-9437-1.  Google Scholar

[3]

J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code,, in, 10 (2001).   Google Scholar

[4]

J. Borges, C. Fernández and J. Rifà, Propelinear structure of $\mathbbZ$2k-linear codes,, preprint, ().   Google Scholar

[5]

C. Carlet, $\mathbbZ$2k-linear codes,, IEEE Trans. Inform. Theory, 44 (1998), 1543.  doi: 10.1109/18.681328.  Google Scholar

[6]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4,, J. Combin. Theory Ser. A, 62 (1993), 30.  doi: 10.1016/0097-3165(93)90070-O.  Google Scholar

[7]

S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$,, Finite Fields Appl., 7 (2001), 507.  doi: 10.1006/ffta.2000.0312.  Google Scholar

[8]

S. T. Dougherty and H. Liu, Independence of vectors in codes over rings,, Designs Codes Crypt., 51 (2009), 55.  doi: 10.1007/s10623-008-9243-1.  Google Scholar

[9]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes,, in, (2008), 46.   Google Scholar

[10]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel,, Designs Codes Crypt., 56 (2010), 43.  doi: 10.1007/s10623-009-9340-9.  Google Scholar

[11]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[12]

M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4,, Arch. Math., 53 (1989), 201.  doi: 10.1007/BF01198572.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland, (1977).   Google Scholar

[14]

Y. H. Park, Modular independence and generator matrices for codes over $Z_m$,, Designs Codes Crypt., 50 (2009), 147.  doi: 10.1007/s10623-008-9220-8.  Google Scholar

[15]

V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'', North-Holland, (1998).   Google Scholar

[16]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[17]

K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$,, Linear Algebra Appl. \textbf{295} (1999), 295 (1999), 191.  doi: 10.1016/S0024-3795(99)00125-1.  Google Scholar

[18]

H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes,, SIAM J. Discrete Math., 17 (2003), 103.  doi: 10.1137/S0895480101397219.  Google Scholar

[19]

Z.-X. Wan, "Quaternary Codes,'', World Scientific, (1997).  doi: 10.1142/9789812798121.  Google Scholar

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory,, American J. Math., 121 (1999), 555.  doi: 10.1353/ajm.1999.0024.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[2]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (14)

[Back to Top]