November  2011, 5(4): 571-588. doi: 10.3934/amc.2011.5.571

Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes

1. 

Department of Mathematics, University of Scranton, Scranton, PA 18510, United States

2. 

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain

Received  March 2010 Revised  October 2011 Published  November 2011

The generalized Gray map is defined for codes over $\mathbb{Z}_{2^k}$. We give bounds for the dimension of the kernel and the rank of the image of a code over $\mathbb{Z}_{2^k}$ with a given type and show that there exists such a code for each dimension in the interval for the kernel. We determine when the Gray image of a code over $\mathbb{Z}_{2^k}$ generates a linear self-dual code and give families of codes whose image generate binary self-dual codes. We investigate the Gray image of quaternary self-dual codes and examine when the Gray image of a self-dual code over $\mathbb{Z}_4$ is a binary self-dual code.
Citation: Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571
References:
[1]

E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205. doi: 10.1109/18.761269.  Google Scholar

[2]

M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$, Designs Codes Crypt., 61 (2011), 31-40. doi: 10.1007/s10623-010-9437-1.  Google Scholar

[3]

J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code, in "COMB'01. Electronic Notes in Discrete Mathematics,'' 10 (2001), Elsevier Science. Google Scholar

[4]

J. Borges, C. Fernández and J. Rifà, Propelinear structure of $\mathbbZ$2k-linear codes,, preprint, ().   Google Scholar

[5]

C. Carlet, $\mathbbZ$2k-linear codes, IEEE Trans. Inform. Theory, 44 (1998), 1543-1547. doi: 10.1109/18.681328.  Google Scholar

[6]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A, 62 (1993), 30-45. doi: 10.1016/0097-3165(93)90070-O.  Google Scholar

[7]

S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$, Finite Fields Appl., 7 (2001), 507-529. doi: 10.1006/ffta.2000.0312.  Google Scholar

[8]

S. T. Dougherty and H. Liu, Independence of vectors in codes over rings, Designs Codes Crypt., 51 (2009), 55-68. doi: 10.1007/s10623-008-9243-1.  Google Scholar

[9]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes, in "Code Theory and Applications,'' Springer, (2008), 46-55. Google Scholar

[10]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel, Designs Codes Crypt., 56 (2010), 43-59. doi: 10.1007/s10623-009-9340-9.  Google Scholar

[11]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319. doi: 10.1109/18.312154.  Google Scholar

[12]

M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4, Arch. Math., 53 (1989), 201-207. doi: 10.1007/BF01198572.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, 1977. Google Scholar

[14]

Y. H. Park, Modular independence and generator matrices for codes over $Z_m$, Designs Codes Crypt., 50 (2009), 147-162. doi: 10.1007/s10623-008-9220-8.  Google Scholar

[15]

V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'' North-Holland, 1998.  Google Scholar

[16]

E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (edited by V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294.  Google Scholar

[17]

K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$, Linear Algebra Appl. 295 (1999), 191-200. doi: 10.1016/S0024-3795(99)00125-1.  Google Scholar

[18]

H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes, SIAM J. Discrete Math., 17 (2003), 103-113. doi: 10.1137/S0895480101397219.  Google Scholar

[19]

Z.-X. Wan, "Quaternary Codes,'' World Scientific, 1997. doi: 10.1142/9789812798121.  Google Scholar

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory, American J. Math., 121 (1999), 555-575. doi: 10.1353/ajm.1999.0024.  Google Scholar

show all references

References:
[1]

E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205. doi: 10.1109/18.761269.  Google Scholar

[2]

M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$, Designs Codes Crypt., 61 (2011), 31-40. doi: 10.1007/s10623-010-9437-1.  Google Scholar

[3]

J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code, in "COMB'01. Electronic Notes in Discrete Mathematics,'' 10 (2001), Elsevier Science. Google Scholar

[4]

J. Borges, C. Fernández and J. Rifà, Propelinear structure of $\mathbbZ$2k-linear codes,, preprint, ().   Google Scholar

[5]

C. Carlet, $\mathbbZ$2k-linear codes, IEEE Trans. Inform. Theory, 44 (1998), 1543-1547. doi: 10.1109/18.681328.  Google Scholar

[6]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A, 62 (1993), 30-45. doi: 10.1016/0097-3165(93)90070-O.  Google Scholar

[7]

S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$, Finite Fields Appl., 7 (2001), 507-529. doi: 10.1006/ffta.2000.0312.  Google Scholar

[8]

S. T. Dougherty and H. Liu, Independence of vectors in codes over rings, Designs Codes Crypt., 51 (2009), 55-68. doi: 10.1007/s10623-008-9243-1.  Google Scholar

[9]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes, in "Code Theory and Applications,'' Springer, (2008), 46-55. Google Scholar

[10]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel, Designs Codes Crypt., 56 (2010), 43-59. doi: 10.1007/s10623-009-9340-9.  Google Scholar

[11]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319. doi: 10.1109/18.312154.  Google Scholar

[12]

M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4, Arch. Math., 53 (1989), 201-207. doi: 10.1007/BF01198572.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland, 1977. Google Scholar

[14]

Y. H. Park, Modular independence and generator matrices for codes over $Z_m$, Designs Codes Crypt., 50 (2009), 147-162. doi: 10.1007/s10623-008-9220-8.  Google Scholar

[15]

V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'' North-Holland, 1998.  Google Scholar

[16]

E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (edited by V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294.  Google Scholar

[17]

K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$, Linear Algebra Appl. 295 (1999), 191-200. doi: 10.1016/S0024-3795(99)00125-1.  Google Scholar

[18]

H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes, SIAM J. Discrete Math., 17 (2003), 103-113. doi: 10.1137/S0895480101397219.  Google Scholar

[19]

Z.-X. Wan, "Quaternary Codes,'' World Scientific, 1997. doi: 10.1142/9789812798121.  Google Scholar

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory, American J. Math., 121 (1999), 555-575. doi: 10.1353/ajm.1999.0024.  Google Scholar

[1]

Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042

[2]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

[3]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[4]

Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038

[5]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[6]

Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054

[7]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[8]

Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245

[9]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[10]

Andrew James Bruce, Janusz Grabowski. Symplectic $ {\mathbb Z}_2^n $-manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021020

[11]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[12]

Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029

[13]

Amit Sharma, Maheshanand Bhaintwal. A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation. Advances in Mathematics of Communications, 2018, 12 (4) : 723-739. doi: 10.3934/amc.2018043

[14]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[15]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[16]

Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094

[17]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[18]

Jennifer D. Key, Washiela Fish, Eric Mwambene. Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \geq 2$. Advances in Mathematics of Communications, 2011, 5 (2) : 373-394. doi: 10.3934/amc.2011.5.373

[19]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[20]

Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (145)
  • HTML views (0)
  • Cited by (14)

[Back to Top]