February  2011, 5(1): 59-68. doi: 10.3934/amc.2011.5.59

Infinite families of optimal splitting authentication codes secure against spoofing attacks of higher order

1. 

Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore, Singapore

2. 

Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310027, China

Received  May 2010 Revised  November 2010 Published  February 2011

We consider the problem of constructing optimal authentication codes with splitting. New infinite families of such codes are obtained. In particular, we establish the first known infinite family of optimal authentication codes with splitting that are secure against spoofing attacks of order two.
Citation: Yeow Meng Chee, Xiande Zhang, Hui Zhang. Infinite families of optimal splitting authentication codes secure against spoofing attacks of higher order. Advances in Mathematics of Communications, 2011, 5 (1) : 59-68. doi: 10.3934/amc.2011.5.59
References:
[1]

A. E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block-size four, Discrete Math., 20 (1977), 1-10. doi: 10.1016/0012-365X(77)90037-1.

[2]

B. Du, Splitting balanced incomplete block designs with block size $3\times 2$, J. Combin. Des. 12 (2004), 404-420. doi: 10.1002/jcd.20025.

[3]

G. Ge, Y. Miao and L. Wang, Combinatorial constructions for optimal splitting authentication codes, SIAM J. Discrete Math., 18 (2005), 663-678. doi: 10.1137/S0895480103435469.

[4]

H. Hanani, Balanced incomplete block designs and related designs, Discrete Math., 11 (1975), 255-369. doi: 10.1016/0012-365X(75)90040-0.

[5]

A. Hartman, The fundamental construction for $3$-designs, Discrete Math., 124 (1994), 107-132. doi: 10.1016/0012-365X(92)00055-V.

[6]

Q. X. Huang, On the decomposition of $K\sb n$ into complete $m$-partite graphs, J. Graph Theory, 15 (1991), 1-6. doi: 10.1002/jgt.3190150102.

[7]

M. Huber, Combinatorial bounds and characterizations of splitting authentication codes, Crypt. Commun., 2 (2010), 173-185. doi: 10.1007/s12095-010-0020-4.

[8]

L. Ji, An improvement on $H$ design, J. Combin. Des., 17 (2009), 25-35. doi: 10.1002/jcd.20184.

[9]

K. Kurosawa and S. Obana, Combinatorial bounds on authentication codes with arbitration, Des. Codes Crypt., 22 (2001), 265-281. doi: 10.1023/A:1008398306907.

[10]

J. L. Massey, Cryptography, a selective survey, in "Digital Communications '85: Proceedings of the Second Tirrenia International Workshop on Digital Communications'' (eds. E. Biglieri and G. Prati), Elsevier, (1986), 3-25.

[11]

W. H. Mills, On the existence of $H$ designs, in "Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990),'' 79 (1990), 129-141.

[12]

W. Ogata, K. Kurosawa, D. R. Stinson and H. Saido, New combinatorial designs and their applications to authentication codes and secret sharing schemes, Discrete Math., 279 (2004), 383-405. doi: 10.1016/S0012-365X(03)00283-8.

[13]

G. J. Simmons, A game theory model of digital message authentication, Congr. Numer., 34 (1982), 413-424.

[14]

G. J. Simmons, Message authentication: a game on hypergraphs, Congr. Numer., 45 (1984), 161-192.

[15]

G. J. Simmons, Authentication theory/coding theory, in "Advances in Cryptology - CRYPTO '84'' (eds. G.R. Blakely and D. Chaum), Springer-Verlag, (1985), 411-432. doi: 10.1007/3-540-39568-7_32.

[16]

G. J. Simmons, Message authentication with arbitration of transmitter/receiver disputes, in "Advances in Cryptology - {EUROCRYPT} '87,'' Springer-Verlag, (1987), 151-165.

[17]

G. J. Simmons, A Cartesian product construction for unconditionally secure authentication codes that permit arbitration, J. Cryptology, 2 (1990), 77-104. doi: 10.1007/BF00204449.

[18]

G. J. Simmons, A survey of information authentication, in "Contemporary Cryptology - The Science of Information Integrity ''(ed. G.J. Simmons), IEEE Press, (1992), 379-419.

[19]

J. Wang, A new class of optimal 3-splitting authentication codes, Des. Codes Crypt., 38 (2006), 373-381. doi: 10.1007/s10623-005-1501-x.

[20]

J. Wang and R. Su, Further results on the existence of splitting BIBDs and application to authentication codes, Acta Appl. Math., 109 (2010), 791-803. doi: 10.1007/s10440-008-9346-8.

[21]

R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combin. Theory Ser. A, 13 (1972), 220-245. doi: 10.1016/0097-3165(72)90028-3.

[22]

R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combin. Theory Ser. A, 13 (1972), 246-273. doi: 10.1016/0097-3165(72)90029-5.

[23]

R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, in "Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975),'' Winnipeg, Man., (1976), 647-659.

show all references

References:
[1]

A. E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block-size four, Discrete Math., 20 (1977), 1-10. doi: 10.1016/0012-365X(77)90037-1.

[2]

B. Du, Splitting balanced incomplete block designs with block size $3\times 2$, J. Combin. Des. 12 (2004), 404-420. doi: 10.1002/jcd.20025.

[3]

G. Ge, Y. Miao and L. Wang, Combinatorial constructions for optimal splitting authentication codes, SIAM J. Discrete Math., 18 (2005), 663-678. doi: 10.1137/S0895480103435469.

[4]

H. Hanani, Balanced incomplete block designs and related designs, Discrete Math., 11 (1975), 255-369. doi: 10.1016/0012-365X(75)90040-0.

[5]

A. Hartman, The fundamental construction for $3$-designs, Discrete Math., 124 (1994), 107-132. doi: 10.1016/0012-365X(92)00055-V.

[6]

Q. X. Huang, On the decomposition of $K\sb n$ into complete $m$-partite graphs, J. Graph Theory, 15 (1991), 1-6. doi: 10.1002/jgt.3190150102.

[7]

M. Huber, Combinatorial bounds and characterizations of splitting authentication codes, Crypt. Commun., 2 (2010), 173-185. doi: 10.1007/s12095-010-0020-4.

[8]

L. Ji, An improvement on $H$ design, J. Combin. Des., 17 (2009), 25-35. doi: 10.1002/jcd.20184.

[9]

K. Kurosawa and S. Obana, Combinatorial bounds on authentication codes with arbitration, Des. Codes Crypt., 22 (2001), 265-281. doi: 10.1023/A:1008398306907.

[10]

J. L. Massey, Cryptography, a selective survey, in "Digital Communications '85: Proceedings of the Second Tirrenia International Workshop on Digital Communications'' (eds. E. Biglieri and G. Prati), Elsevier, (1986), 3-25.

[11]

W. H. Mills, On the existence of $H$ designs, in "Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990),'' 79 (1990), 129-141.

[12]

W. Ogata, K. Kurosawa, D. R. Stinson and H. Saido, New combinatorial designs and their applications to authentication codes and secret sharing schemes, Discrete Math., 279 (2004), 383-405. doi: 10.1016/S0012-365X(03)00283-8.

[13]

G. J. Simmons, A game theory model of digital message authentication, Congr. Numer., 34 (1982), 413-424.

[14]

G. J. Simmons, Message authentication: a game on hypergraphs, Congr. Numer., 45 (1984), 161-192.

[15]

G. J. Simmons, Authentication theory/coding theory, in "Advances in Cryptology - CRYPTO '84'' (eds. G.R. Blakely and D. Chaum), Springer-Verlag, (1985), 411-432. doi: 10.1007/3-540-39568-7_32.

[16]

G. J. Simmons, Message authentication with arbitration of transmitter/receiver disputes, in "Advances in Cryptology - {EUROCRYPT} '87,'' Springer-Verlag, (1987), 151-165.

[17]

G. J. Simmons, A Cartesian product construction for unconditionally secure authentication codes that permit arbitration, J. Cryptology, 2 (1990), 77-104. doi: 10.1007/BF00204449.

[18]

G. J. Simmons, A survey of information authentication, in "Contemporary Cryptology - The Science of Information Integrity ''(ed. G.J. Simmons), IEEE Press, (1992), 379-419.

[19]

J. Wang, A new class of optimal 3-splitting authentication codes, Des. Codes Crypt., 38 (2006), 373-381. doi: 10.1007/s10623-005-1501-x.

[20]

J. Wang and R. Su, Further results on the existence of splitting BIBDs and application to authentication codes, Acta Appl. Math., 109 (2010), 791-803. doi: 10.1007/s10440-008-9346-8.

[21]

R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combin. Theory Ser. A, 13 (1972), 220-245. doi: 10.1016/0097-3165(72)90028-3.

[22]

R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combin. Theory Ser. A, 13 (1972), 246-273. doi: 10.1016/0097-3165(72)90029-5.

[23]

R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, in "Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975),'' Winnipeg, Man., (1976), 647-659.

[1]

Maura B. Paterson, Douglas R. Stinson. Splitting authentication codes with perfect secrecy: New results, constructions and connections with algebraic manipulation detection codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021054

[2]

María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018

[3]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[4]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[5]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[6]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[7]

D. R. Stinson. Unconditionally secure chaffing and winnowing with short authentication tags. Advances in Mathematics of Communications, 2007, 1 (2) : 269-280. doi: 10.3934/amc.2007.1.269

[8]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[9]

Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells. Ironwood meta key agreement and authentication protocol. Advances in Mathematics of Communications, 2021, 15 (3) : 397-413. doi: 10.3934/amc.2020073

[10]

Andrea Seidl, Stefan Wrzaczek. Opening the source code: The threat of forking. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022010

[11]

Jie Xu, Lanjun Dang. An efficient RFID anonymous batch authentication protocol based on group signature. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1489-1500. doi: 10.3934/dcdss.2019102

[12]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[13]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[14]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[15]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[16]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[17]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems and Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[18]

Eskil Hansen, Alexander Ostermann. Dimension splitting for time dependent operators. Conference Publications, 2009, 2009 (Special) : 322-332. doi: 10.3934/proc.2009.2009.322

[19]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[20]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]