November  2011, 5(4): 681-686. doi: 10.3934/amc.2011.5.681

All binary linear codes of lengths up to 18 or redundancy up to 10 are normal

1. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, P.O.Box 323, 5000 Veliko Tarnovo, Bulgaria

Received  December 2010 Revised  June 2011 Published  November 2011

We show that all binary codes of lengths 16, 17 and 18, or redundancy 10, are normal. These results have applications in the construction of codes that attain $t[n,k]$, the smallest covering radius of any binary linear code.
Citation: Tsonka Baicheva. All binary linear codes of lengths up to 18 or redundancy up to 10 are normal. Advances in Mathematics of Communications, 2011, 5 (4) : 681-686. doi: 10.3934/amc.2011.5.681
References:
[1]

I. Bouyukliev, What is Q-extension?,, Serdica J. Comput., 1 (2007), 115.   Google Scholar

[2]

A. E. Brouwer, Bounds on the size of linear codes,, in, (1998), 295.   Google Scholar

[3]

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,'', Elsevier Science B. V., (1997).   Google Scholar

[4]

G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr. and J. R. Schatz, Covering radius - survey and recent results,, IEEE Trans. Inform. Theory, 31 (1985), 738.  doi: 10.1109/TIT.1985.1057043.  Google Scholar

[5]

G. D. Cohen, S. N. Litsyn, A. C. Lobstein and H. F. Mattson, Jr., Covering radius 1985-1994,, AAECC, 8 (1997), 173.  doi: 10.1007/s002000050061.  Google Scholar

[6]

G. D. Cohen, A. C. Lobstein and N. J. A. Sloane, Further results on the covering radius of codes,, IEEE Trans. Inform. Theory, 32 (1986), 680.  doi: 10.1109/TIT.1986.1057227.  Google Scholar

[7]

R. L. Graham and N. J. A. Sloane, On the covering radius of codes,, IEEE Trans. Inform. Theory, 31 (1985), 385.  doi: 10.1109/TIT.1985.1057039.  Google Scholar

[8]

X.-D. Hou, Binary linear quasi-perfect codes codes are normal,, IEEE Trans. Inform. Theory, 37 (1991), 378.  doi: 10.1109/18.75258.  Google Scholar

[9]

H. Janwa and H. F. Mattson, Jr., Some upper bounds on the covering radii of linear codes over $F_q$ and their applications,, Des. Codes Crypt., 18 (1999), 163.  doi: 10.1023/A:1008397405457.  Google Scholar

[10]

K. E. Kilby and N. J. A. Sloane, On the covering radius problem for codes: I Bounds on normalized covering radius, II Codes of low dimension; normal and abnormal codes,, SIAM J. Algebraic Discrete Methods, 8 (1987), 604.  doi: 10.1137/0608049.  Google Scholar

[11]

H. F. Mattson, Jr., An improved upper bound on covering radius,, in, (1986), 90.   Google Scholar

show all references

References:
[1]

I. Bouyukliev, What is Q-extension?,, Serdica J. Comput., 1 (2007), 115.   Google Scholar

[2]

A. E. Brouwer, Bounds on the size of linear codes,, in, (1998), 295.   Google Scholar

[3]

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,'', Elsevier Science B. V., (1997).   Google Scholar

[4]

G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr. and J. R. Schatz, Covering radius - survey and recent results,, IEEE Trans. Inform. Theory, 31 (1985), 738.  doi: 10.1109/TIT.1985.1057043.  Google Scholar

[5]

G. D. Cohen, S. N. Litsyn, A. C. Lobstein and H. F. Mattson, Jr., Covering radius 1985-1994,, AAECC, 8 (1997), 173.  doi: 10.1007/s002000050061.  Google Scholar

[6]

G. D. Cohen, A. C. Lobstein and N. J. A. Sloane, Further results on the covering radius of codes,, IEEE Trans. Inform. Theory, 32 (1986), 680.  doi: 10.1109/TIT.1986.1057227.  Google Scholar

[7]

R. L. Graham and N. J. A. Sloane, On the covering radius of codes,, IEEE Trans. Inform. Theory, 31 (1985), 385.  doi: 10.1109/TIT.1985.1057039.  Google Scholar

[8]

X.-D. Hou, Binary linear quasi-perfect codes codes are normal,, IEEE Trans. Inform. Theory, 37 (1991), 378.  doi: 10.1109/18.75258.  Google Scholar

[9]

H. Janwa and H. F. Mattson, Jr., Some upper bounds on the covering radii of linear codes over $F_q$ and their applications,, Des. Codes Crypt., 18 (1999), 163.  doi: 10.1023/A:1008397405457.  Google Scholar

[10]

K. E. Kilby and N. J. A. Sloane, On the covering radius problem for codes: I Bounds on normalized covering radius, II Codes of low dimension; normal and abnormal codes,, SIAM J. Algebraic Discrete Methods, 8 (1987), 604.  doi: 10.1137/0608049.  Google Scholar

[11]

H. F. Mattson, Jr., An improved upper bound on covering radius,, in, (1986), 90.   Google Scholar

[1]

Tsonka Baicheva, Iliya Bouyukliev. On the least covering radius of binary linear codes of dimension 6. Advances in Mathematics of Communications, 2010, 4 (3) : 399-404. doi: 10.3934/amc.2010.4.399

[2]

Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025

[3]

Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129

[4]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[5]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

[6]

Otávio J. N. T. N. dos Santos, Emerson L. Monte Carmelo. A connection between sumsets and covering codes of a module. Advances in Mathematics of Communications, 2018, 12 (3) : 595-605. doi: 10.3934/amc.2018035

[7]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[8]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

[9]

Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046

[10]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[11]

Joaquim Borges, Ivan Yu. Mogilnykh, Josep Rifà, Faina I. Solov'eva. Structural properties of binary propelinear codes. Advances in Mathematics of Communications, 2012, 6 (3) : 329-346. doi: 10.3934/amc.2012.6.329

[12]

Kai Zehmisch. The codisc radius capacity. Electronic Research Announcements, 2013, 20: 77-96. doi: 10.3934/era.2013.20.77

[13]

Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012

[14]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[15]

Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048

[16]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[17]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[18]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[19]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

[20]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]