Citation: |
[1] |
I. Bouyukliev, What is Q-extension?, Serdica J. Comput., 1 (2007), 115-130. |
[2] |
A. E. Brouwer, Bounds on the size of linear codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 295-461. |
[3] |
G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, "Covering Codes,'' Elsevier Science B. V., North-Holland, 1997. |
[4] |
G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr. and J. R. Schatz, Covering radius - survey and recent results, IEEE Trans. Inform. Theory, 31 (1985), 738-740.doi: 10.1109/TIT.1985.1057043. |
[5] |
G. D. Cohen, S. N. Litsyn, A. C. Lobstein and H. F. Mattson, Jr., Covering radius 1985-1994, AAECC, 8 (1997), 173-239.doi: 10.1007/s002000050061. |
[6] |
G. D. Cohen, A. C. Lobstein and N. J. A. Sloane, Further results on the covering radius of codes, IEEE Trans. Inform. Theory, 32 (1986), 680-694.doi: 10.1109/TIT.1986.1057227. |
[7] |
R. L. Graham and N. J. A. Sloane, On the covering radius of codes, IEEE Trans. Inform. Theory, 31 (1985), 385-401.doi: 10.1109/TIT.1985.1057039. |
[8] |
X.-D. Hou, Binary linear quasi-perfect codes codes are normal, IEEE Trans. Inform. Theory, 37 (1991), 378-379.doi: 10.1109/18.75258. |
[9] |
H. Janwa and H. F. Mattson, Jr., Some upper bounds on the covering radii of linear codes over $F_q$ and their applications, Des. Codes Crypt., 18 (1999), 163-181.doi: 10.1023/A:1008397405457. |
[10] |
K. E. Kilby and N. J. A. Sloane, On the covering radius problem for codes: I Bounds on normalized covering radius, II Codes of low dimension; normal and abnormal codes, SIAM J. Algebraic Discrete Methods, 8 (1987), 604-627.doi: 10.1137/0608049. |
[11] |
H. F. Mattson, Jr., An improved upper bound on covering radius, in "Applied Algebra, Algorithmics and Error-Correcting Codes,'' Springer, Berlin, (1986), 90-106. |