Citation: |
[1] |
S. Bouyuklieva, Some Optimal self-orthogonal and self-dual codes, J. Discrete Math., 287 (2004), 1-10.doi: 10.1016/j.disc.2004.06.010. |
[2] |
S. Bouyuklieva and V. Yorgov, Singly-even self-dual codes of length $40$, Des. Codes Cryptogr., 9 (1996), 131-141.doi: 10.1007/BF00124589. |
[3] |
N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr., 42 (2007), 93-101.doi: 10.1007/s10623-006-9018-5. |
[4] |
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.doi: 10.1109/18.59931. |
[5] |
D. B. Dalan, New Extremal Type I Codes of lengths 40, 42 and 44, Des. Codes Cryptogr., 30 (2003), 151-157.doi: 10.1023/A:1025476619824. |
[6] |
S. T. Dougherty, P. Gaborit, M. Harada and P. Solé, Type II codes over $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Infrom. Theory, 45 (1999), 32-45. |
[7] |
P. Gaborit and A. Otmani, Experimental constructions of self-dual codes, Finite Fields Appl., 9 (2003), 372-394. |
[8] |
T. A. Gulliver, Construction of optimal Type IV self-dual codes over $\mathbb F_2+u\mathbb F_2$, IEEE Trans. Inform. Theory, 45 (1999), 2520-2521.doi: 10.1109/18.796394. |
[9] |
M. Harada, T. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to 62, J. Discrete Math., 188 (1998), 127-136.doi: 10.1016/S0012-365X(97)00250-1. |
[10] |
M. Harada, M. Kiermaier, A. Wasserman and R. Yorgova, New binary singly even self-dual codes, IEEE Trans. Inform. Theory, 56 (2010), 1612-1617.doi: 10.1109/TIT.2010.2040967. |
[11] |
M. Harada, A. Munemasa and K. Tanabe, Extremal self-dual [40,20,8] codes with covering radius 7, Finite Fields Appl., 10 (2004), 183-197.doi: 10.1016/j.ffa.2003.08.001. |
[12] |
M. Harada and M. Ozeki, Extremal self-dual codes with the smallest covering radius, Discrete Math., 215 (2000), 271-281.doi: 10.1016/S0012-365X(99)00318-0. |
[13] |
T. Nishimura, A new extremal self-dual code of length 64, IEEE Trans. Inform. Theory, 50 (2004), 2173-2174.doi: 10.1109/TIT.2004.833359. |
[14] |
M. Ozeki, On covering radii and coset weight distributions of extremal binary self-dual codes of length 40, Theoret. Comput. Sci., 235 (2000), 283-308.doi: 10.1016/S0304-3975(99)00200-5. |
[15] |
H. P. Tsai, P. Y. Shih, R. Y. Wuh, W. K. Su and C. H. Chen, Construction of self-fual codes, IEEE Trans. Inform. Theory, 54 (2008), 3826-3831.doi: 10.1109/TIT.2008.926454. |
[16] |
B. Yildiz and S. Karadeniz, Linear codes over $\mathbb F_2+u\mathbb F_2+v\mathbb F_2+uv\mathbb F_2$, Des. Codes Cryptogr., 54 (2010), 61-81.doi: 10.1007/s10623-009-9309-8. |
[17] |
B. Yildiz and S. Karadeniz, Self-dual codes over $\mathbb F_2+u\mathbb F_2+v\mathbb F_2+uv\mathbb F_2$, J. Franklin Inst., 347 (2010), 1888-1894.doi: 10.1016/j.jfranklin.2010.10.007. |
[18] |
V. I. Yorgo and N. Ziapkov, Doubly even self-dual [40,20,8] codes with automorphism of an odd order, Probl. Peredachi Inf., 32 (1996), 41-46. |
[19] |
R. Yorgova, Constructing self-dual codes using an automorphism group, in "Proc. IEEE Inform. Theory Workshop,'' 2006. |