May  2012, 6(2): 229-235. doi: 10.3934/amc.2012.6.229

Classification of self-dual codes of length 36

1. 

Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan, and PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

2. 

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Received  June 2011 Published  April 2012

A complete classification of binary self-dual codes of length $36$ is given.
Citation: Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229
References:
[1]

C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows,, J. Combin. Theory Ser. A, 105 (2004), 15.  doi: 10.1016/j.jcta.2003.09.003.  Google Scholar

[2]

R. T. Bilous, Enumeration of the binary self-dual codes of length $34$,, J. Combin. Math. Combin. Comput., 59 (2006), 173.   Google Scholar

[3]

R. T. Bilous and G. H. J. van Rees, An enumeration of self-dual codes of length $32$,, Des. Codes Cryptogr., 26 (2002), 61.  doi: 10.1023/A:1016544907275.  Google Scholar

[4]

W. Bosma and J. Cannon, "Handbook of Magma Functions,'' Department of Mathematics, University of Sydney,, available online at \url{http://magma.maths.usyd.edu.au/magma/+}, ().   Google Scholar

[5]

S. Bouyuklieva and I. Bouyukliev, An algorithm for classification of binary self-dual codes,, IEEE Trans. Inform. Theory, ().   Google Scholar

[6]

G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr. and J. R. Schatz, Covering radius — Survey and recent results,, IEEE Trans. Inform. Theory, 31 (1985), 328.  doi: 10.1109/TIT.1985.1057043.  Google Scholar

[7]

M. Harada and A. Munemasa, "Database of Self-Dual Codes,'', available online at \url{http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm}, ().   Google Scholar

[8]

W. C. Huffman, Characterization of quaternary extremal codes of lengths $18$ and $20$,, IEEE Trans. Inform. Theory, 43 (1997), 1613.  doi: 10.1109/18.623160.  Google Scholar

[9]

C. A. Melchor and P. Gaborit, On the classification of extremal binary self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4743.  doi: 10.1109/TIT.2008.928976.  Google Scholar

[10]

E. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[11]

J. G. Thompson, Weighted averages associated to some codes,, Scripta Math., 29 (1973), 449.   Google Scholar

show all references

References:
[1]

C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows,, J. Combin. Theory Ser. A, 105 (2004), 15.  doi: 10.1016/j.jcta.2003.09.003.  Google Scholar

[2]

R. T. Bilous, Enumeration of the binary self-dual codes of length $34$,, J. Combin. Math. Combin. Comput., 59 (2006), 173.   Google Scholar

[3]

R. T. Bilous and G. H. J. van Rees, An enumeration of self-dual codes of length $32$,, Des. Codes Cryptogr., 26 (2002), 61.  doi: 10.1023/A:1016544907275.  Google Scholar

[4]

W. Bosma and J. Cannon, "Handbook of Magma Functions,'' Department of Mathematics, University of Sydney,, available online at \url{http://magma.maths.usyd.edu.au/magma/+}, ().   Google Scholar

[5]

S. Bouyuklieva and I. Bouyukliev, An algorithm for classification of binary self-dual codes,, IEEE Trans. Inform. Theory, ().   Google Scholar

[6]

G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr. and J. R. Schatz, Covering radius — Survey and recent results,, IEEE Trans. Inform. Theory, 31 (1985), 328.  doi: 10.1109/TIT.1985.1057043.  Google Scholar

[7]

M. Harada and A. Munemasa, "Database of Self-Dual Codes,'', available online at \url{http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm}, ().   Google Scholar

[8]

W. C. Huffman, Characterization of quaternary extremal codes of lengths $18$ and $20$,, IEEE Trans. Inform. Theory, 43 (1997), 1613.  doi: 10.1109/18.623160.  Google Scholar

[9]

C. A. Melchor and P. Gaborit, On the classification of extremal binary self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4743.  doi: 10.1109/TIT.2008.928976.  Google Scholar

[10]

E. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[11]

J. G. Thompson, Weighted averages associated to some codes,, Scripta Math., 29 (1973), 449.   Google Scholar

[1]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[2]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[3]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[4]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[5]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[6]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[10]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[11]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[12]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[13]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[14]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[15]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[16]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[17]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[18]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]