-
Previous Article
Bent functions on a Galois ring and systematic authentication codes
- AMC Home
- This Issue
-
Next Article
Classification of self-dual codes of length 36
Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping
1. | College of Communication Engineering, Chongqing University, Chongqing 400044, China, and Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035, China |
2. | College of Communication Engineering, Chongqing University, Chongqing 400044, China |
3. | Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035, China, China |
References:
[1] |
R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inform. Theory, 52 (2006), 3817-3826.
doi: 10.1109/TIT.2006.878171. |
[2] |
L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE Trans. Inform. Theory, 36 (1990), 1487-1497.
doi: 10.1109/18.59954. |
[3] |
H. H. Chen, D. Hank and M. E. Magañz, Design of next-generation CDMA using orthogonal complementary codes and offset stacked spreading, IEEE Wireless Commun., 2007 (2007), 61-69.
doi: 10.1109/MWC.2007.386614. |
[4] |
J. H. Chung and K. Yang, New design of quaternary low-correlation zone sequences sets and quaternary Hadamard matrices, IEEE Trans. Inform. Theory, 54 (2008), 3733-3737.
doi: 10.1109/TIT.2008.926406. |
[5] |
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[6] |
D. Ž. Đoković, Note on periodic complementary sets of binary sequences, Des. Codes Cryptogr., 13 (1998), 251-256.
doi: 10.1023/A:1008245823233. |
[7] |
D. Ž. Đoković, Periodic complementary sets of binary sequences, Int. Math. Forum, 4 (2009), 717-725. |
[8] |
P. Z. Fan and M. Darnell, "Sequence Design for Communications Applictions,'' John Wiley & Sons Inc., 1996. |
[9] |
P. Z. Fan, W. N. Yuan and Y. F. Tu, Z-complementary binary sequences, IEEE Signal Proc. Letters, 14 (2007), 509-512.
doi: 10.1109/LSP.2007.891834. |
[10] |
K. Feng, P. J. S. Shyue and Q. Xiang, On the aperiodic and periodic complementary binary sequences, IEEE Trans. Inform. Theory, 45 (1999), 296-303.
doi: 10.1109/18.746823. |
[11] |
R. L. Frank, Polyphase complementary codes, IEEE Trans. Inform. Theory, IT-26 (1980), 641-647.
doi: 10.1109/TIT.1980.1056272. |
[12] |
M. J. E. Golay, Complementary series, IEEE Trans. Inform. Theory, IT-7 (1960), 82-87. |
[13] |
S. W. Golomb and G. Gong, "Signal Design for Good Correlation: for Wireless Communications, Cryptography and Radar Applications,'' Cambridge University Press, 2005.
doi: 10.1017/CBO9780511546907. |
[14] |
J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets, Adv. Math. Commun., 4 (2010), 61-68.
doi: 10.3934/amc.2010.4.61. |
[15] |
S. M. Krone and D. V. Sarwate, Quadriphase sequences for spread spectrum multiple-access communication, IEEE Trans. Inform. Theory, IT-30 (1984), 520-529.
doi: 10.1109/TIT.1984.1056913. |
[16] |
M. G. Parker, C. Tellambura and K. G. Paterson, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunicatins'' (ed. J.G. Proakis), Wiley, 2003.
doi: 10.1002/0471219282.eot367. |
[17] |
R. Sivaswamy, Multiphase complementary codes, IEEE Trans. Inform. Theory, IT-24 (1978), 545-552. |
[18] |
N. Suehiro and M. Hatori, N-shift cross-orthogonal sequences, IEEE Trans. Inform. Theory, 34 (1988), 143-146.
doi: 10.1109/18.2615. |
[19] |
S. M. Tseng and M. R. Bell, Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences, IEEE Trans. Commun., 48 (2000), 53-59.
doi: 10.1109/26.818873. |
[20] |
C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inform. Theory, IT-18 (1972), 644-652.
doi: 10.1109/TIT.1972.1054860. |
[21] |
Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Z-periodic complementary Sequence set based on phase shift, IEEE Signal Proc. Letters, 17 (2010), 891-893.
doi: 10.1109/LSP.2010.2068288. |
[22] |
Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multi-width zero cross-correlation zone, IEICE Trans. Fundam., E93-A (2010), 1508-1517. |
show all references
References:
[1] |
R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inform. Theory, 52 (2006), 3817-3826.
doi: 10.1109/TIT.2006.878171. |
[2] |
L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE Trans. Inform. Theory, 36 (1990), 1487-1497.
doi: 10.1109/18.59954. |
[3] |
H. H. Chen, D. Hank and M. E. Magañz, Design of next-generation CDMA using orthogonal complementary codes and offset stacked spreading, IEEE Wireless Commun., 2007 (2007), 61-69.
doi: 10.1109/MWC.2007.386614. |
[4] |
J. H. Chung and K. Yang, New design of quaternary low-correlation zone sequences sets and quaternary Hadamard matrices, IEEE Trans. Inform. Theory, 54 (2008), 3733-3737.
doi: 10.1109/TIT.2008.926406. |
[5] |
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[6] |
D. Ž. Đoković, Note on periodic complementary sets of binary sequences, Des. Codes Cryptogr., 13 (1998), 251-256.
doi: 10.1023/A:1008245823233. |
[7] |
D. Ž. Đoković, Periodic complementary sets of binary sequences, Int. Math. Forum, 4 (2009), 717-725. |
[8] |
P. Z. Fan and M. Darnell, "Sequence Design for Communications Applictions,'' John Wiley & Sons Inc., 1996. |
[9] |
P. Z. Fan, W. N. Yuan and Y. F. Tu, Z-complementary binary sequences, IEEE Signal Proc. Letters, 14 (2007), 509-512.
doi: 10.1109/LSP.2007.891834. |
[10] |
K. Feng, P. J. S. Shyue and Q. Xiang, On the aperiodic and periodic complementary binary sequences, IEEE Trans. Inform. Theory, 45 (1999), 296-303.
doi: 10.1109/18.746823. |
[11] |
R. L. Frank, Polyphase complementary codes, IEEE Trans. Inform. Theory, IT-26 (1980), 641-647.
doi: 10.1109/TIT.1980.1056272. |
[12] |
M. J. E. Golay, Complementary series, IEEE Trans. Inform. Theory, IT-7 (1960), 82-87. |
[13] |
S. W. Golomb and G. Gong, "Signal Design for Good Correlation: for Wireless Communications, Cryptography and Radar Applications,'' Cambridge University Press, 2005.
doi: 10.1017/CBO9780511546907. |
[14] |
J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets, Adv. Math. Commun., 4 (2010), 61-68.
doi: 10.3934/amc.2010.4.61. |
[15] |
S. M. Krone and D. V. Sarwate, Quadriphase sequences for spread spectrum multiple-access communication, IEEE Trans. Inform. Theory, IT-30 (1984), 520-529.
doi: 10.1109/TIT.1984.1056913. |
[16] |
M. G. Parker, C. Tellambura and K. G. Paterson, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunicatins'' (ed. J.G. Proakis), Wiley, 2003.
doi: 10.1002/0471219282.eot367. |
[17] |
R. Sivaswamy, Multiphase complementary codes, IEEE Trans. Inform. Theory, IT-24 (1978), 545-552. |
[18] |
N. Suehiro and M. Hatori, N-shift cross-orthogonal sequences, IEEE Trans. Inform. Theory, 34 (1988), 143-146.
doi: 10.1109/18.2615. |
[19] |
S. M. Tseng and M. R. Bell, Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences, IEEE Trans. Commun., 48 (2000), 53-59.
doi: 10.1109/26.818873. |
[20] |
C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inform. Theory, IT-18 (1972), 644-652.
doi: 10.1109/TIT.1972.1054860. |
[21] |
Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Z-periodic complementary Sequence set based on phase shift, IEEE Signal Proc. Letters, 17 (2010), 891-893.
doi: 10.1109/LSP.2010.2068288. |
[22] |
Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multi-width zero cross-correlation zone, IEICE Trans. Fundam., E93-A (2010), 1508-1517. |
[1] |
Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61 |
[2] |
Zhen Li, Cuiling Fan, Wei Su, Yanfeng Qi. Aperiodic/periodic complementary sequence pairs over quaternions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021063 |
[3] |
Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113-125. doi: 10.3934/amc.2013.7.113 |
[4] |
Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9 |
[5] |
Liqun Yao, Wenli Ren, Yong Wang, Chunming Tang. Z-complementary pairs with flexible lengths and large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021037 |
[6] |
Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115 |
[7] |
Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 |
[8] |
Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018 |
[9] |
Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial and Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451 |
[10] |
Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021008 |
[11] |
Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409 |
[12] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[13] |
Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with inter-subset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541-552. doi: 10.3934/amc.2018032 |
[14] |
Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135 |
[15] |
Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533 |
[16] |
Wenjun Xia, Jinzhi Lei. Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences & Engineering, 2018, 15 (2) : 507-522. doi: 10.3934/mbe.2018023 |
[17] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3017-3025. doi: 10.3934/dcdss.2020465 |
[18] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[19] |
Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375 |
[20] |
Finley Freibert. The classification of complementary information set codes of lengths $14$ and $16$. Advances in Mathematics of Communications, 2013, 7 (3) : 267-278. doi: 10.3934/amc.2013.7.267 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]