\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping

Abstract Related Papers Cited by
  • A family of quaternary periodic complementary sequence (PCS) or Z-complementary sequence (PZCS) sets is presented. By combining an interleaving technique and the inverse Gray mapping, the proposed method transforms the known binary PCS/PZCS sets with odd length of sub-sequences into quaternary PCS/PZCS sets, but the length of new sub-sequences is twice as long as that of the original sub-sequences, which is a drawback of this proposed method. However, the shortcoming that the method proposed by J. W. Jang, et al. is merely fit for even length of sub-sequences is overcome. As a consequence, the union of our and J. W. Jang, et al.'s methods allows us to construct quaternary PCS/PZCS sets from binary PCS/PZCS sets with sub-sequences of arbitrary length.
    Mathematics Subject Classification: Primary: 11B50, 94A55; Secondary: 11B75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inform. Theory, 52 (2006), 3817-3826.doi: 10.1109/TIT.2006.878171.

    [2]

    L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE Trans. Inform. Theory, 36 (1990), 1487-1497.doi: 10.1109/18.59954.

    [3]

    H. H. Chen, D. Hank and M. E. Magañz, Design of next-generation CDMA using orthogonal complementary codes and offset stacked spreading, IEEE Wireless Commun., 2007 (2007), 61-69.doi: 10.1109/MWC.2007.386614.

    [4]

    J. H. Chung and K. Yang, New design of quaternary low-correlation zone sequences sets and quaternary Hadamard matrices, IEEE Trans. Inform. Theory, 54 (2008), 3733-3737.doi: 10.1109/TIT.2008.926406.

    [5]

    J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.doi: 10.1109/18.796380.

    [6]

    D. Ž. Đoković, Note on periodic complementary sets of binary sequences, Des. Codes Cryptogr., 13 (1998), 251-256.doi: 10.1023/A:1008245823233.

    [7]

    D. Ž. Đoković, Periodic complementary sets of binary sequences, Int. Math. Forum, 4 (2009), 717-725.

    [8]

    P. Z. Fan and M. Darnell, "Sequence Design for Communications Applictions,'' John Wiley & Sons Inc., 1996.

    [9]

    P. Z. Fan, W. N. Yuan and Y. F. Tu, Z-complementary binary sequences, IEEE Signal Proc. Letters, 14 (2007), 509-512.doi: 10.1109/LSP.2007.891834.

    [10]

    K. Feng, P. J. S. Shyue and Q. Xiang, On the aperiodic and periodic complementary binary sequences, IEEE Trans. Inform. Theory, 45 (1999), 296-303.doi: 10.1109/18.746823.

    [11]

    R. L. Frank, Polyphase complementary codes, IEEE Trans. Inform. Theory, IT-26 (1980), 641-647.doi: 10.1109/TIT.1980.1056272.

    [12]

    M. J. E. Golay, Complementary series, IEEE Trans. Inform. Theory, IT-7 (1960), 82-87.

    [13]

    S. W. Golomb and G. Gong, "Signal Design for Good Correlation: for Wireless Communications, Cryptography and Radar Applications,'' Cambridge University Press, 2005.doi: 10.1017/CBO9780511546907.

    [14]

    J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets, Adv. Math. Commun., 4 (2010), 61-68.doi: 10.3934/amc.2010.4.61.

    [15]

    S. M. Krone and D. V. Sarwate, Quadriphase sequences for spread spectrum multiple-access communication, IEEE Trans. Inform. Theory, IT-30 (1984), 520-529.doi: 10.1109/TIT.1984.1056913.

    [16]

    M. G. Parker, C. Tellambura and K. G. Paterson, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunicatins'' (ed. J.G. Proakis), Wiley, 2003.doi: 10.1002/0471219282.eot367.

    [17]

    R. Sivaswamy, Multiphase complementary codes, IEEE Trans. Inform. Theory, IT-24 (1978), 545-552.

    [18]

    N. Suehiro and M. Hatori, N-shift cross-orthogonal sequences, IEEE Trans. Inform. Theory, 34 (1988), 143-146.doi: 10.1109/18.2615.

    [19]

    S. M. Tseng and M. R. Bell, Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences, IEEE Trans. Commun., 48 (2000), 53-59.doi: 10.1109/26.818873.

    [20]

    C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inform. Theory, IT-18 (1972), 644-652.doi: 10.1109/TIT.1972.1054860.

    [21]

    Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Z-periodic complementary Sequence set based on phase shift, IEEE Signal Proc. Letters, 17 (2010), 891-893.doi: 10.1109/LSP.2010.2068288.

    [22]

    Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multi-width zero cross-correlation zone, IEICE Trans. Fundam., E93-A (2010), 1508-1517.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return