May  2012, 6(2): 237-247. doi: 10.3934/amc.2012.6.237

Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping

1. 

College of Communication Engineering, Chongqing University, Chongqing 400044, China, and Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035, China

2. 

College of Communication Engineering, Chongqing University, Chongqing 400044, China

3. 

Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035, China, China

Received  June 2011 Revised  January 2012 Published  April 2012

A family of quaternary periodic complementary sequence (PCS) or Z-complementary sequence (PZCS) sets is presented. By combining an interleaving technique and the inverse Gray mapping, the proposed method transforms the known binary PCS/PZCS sets with odd length of sub-sequences into quaternary PCS/PZCS sets, but the length of new sub-sequences is twice as long as that of the original sub-sequences, which is a drawback of this proposed method. However, the shortcoming that the method proposed by J. W. Jang, et al. is merely fit for even length of sub-sequences is overcome. As a consequence, the union of our and J. W. Jang, et al.'s methods allows us to construct quaternary PCS/PZCS sets from binary PCS/PZCS sets with sub-sequences of arbitrary length.
Citation: Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237
References:
[1]

R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences,, IEEE Trans. Inform. Theory, 52 (2006), 3817.  doi: 10.1109/TIT.2006.878171.  Google Scholar

[2]

L. Bömer and M. Antweiler, Periodic complementary binary sequences,, IEEE Trans. Inform. Theory, 36 (1990), 1487.  doi: 10.1109/18.59954.  Google Scholar

[3]

H. H. Chen, D. Hank and M. E. Magañz, Design of next-generation CDMA using orthogonal complementary codes and offset stacked spreading,, IEEE Wireless Commun., 2007 (2007), 61.  doi: 10.1109/MWC.2007.386614.  Google Scholar

[4]

J. H. Chung and K. Yang, New design of quaternary low-correlation zone sequences sets and quaternary Hadamard matrices,, IEEE Trans. Inform. Theory, 54 (2008), 3733.  doi: 10.1109/TIT.2008.926406.  Google Scholar

[5]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,, IEEE Trans. Inform. Theory, 45 (1999), 2397.  doi: 10.1109/18.796380.  Google Scholar

[6]

D. Ž. Đoković, Note on periodic complementary sets of binary sequences,, Des. Codes Cryptogr., 13 (1998), 251.  doi: 10.1023/A:1008245823233.  Google Scholar

[7]

D. Ž. Đoković, Periodic complementary sets of binary sequences,, Int. Math. Forum, 4 (2009), 717.   Google Scholar

[8]

P. Z. Fan and M. Darnell, "Sequence Design for Communications Applictions,'', John Wiley & Sons Inc., (1996).   Google Scholar

[9]

P. Z. Fan, W. N. Yuan and Y. F. Tu, Z-complementary binary sequences,, IEEE Signal Proc. Letters, 14 (2007), 509.  doi: 10.1109/LSP.2007.891834.  Google Scholar

[10]

K. Feng, P. J. S. Shyue and Q. Xiang, On the aperiodic and periodic complementary binary sequences,, IEEE Trans. Inform. Theory, 45 (1999), 296.  doi: 10.1109/18.746823.  Google Scholar

[11]

R. L. Frank, Polyphase complementary codes,, IEEE Trans. Inform. Theory, IT-26 (1980), 641.  doi: 10.1109/TIT.1980.1056272.  Google Scholar

[12]

M. J. E. Golay, Complementary series,, IEEE Trans. Inform. Theory, IT-7 (1960), 82.   Google Scholar

[13]

S. W. Golomb and G. Gong, "Signal Design for Good Correlation: for Wireless Communications, Cryptography and Radar Applications,'', Cambridge University Press, (2005).  doi: 10.1017/CBO9780511546907.  Google Scholar

[14]

J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets,, Adv. Math. Commun., 4 (2010), 61.  doi: 10.3934/amc.2010.4.61.  Google Scholar

[15]

S. M. Krone and D. V. Sarwate, Quadriphase sequences for spread spectrum multiple-access communication,, IEEE Trans. Inform. Theory, IT-30 (1984), 520.  doi: 10.1109/TIT.1984.1056913.  Google Scholar

[16]

M. G. Parker, C. Tellambura and K. G. Paterson, Golay complementary sequences,, in, (2003).  doi: 10.1002/0471219282.eot367.  Google Scholar

[17]

R. Sivaswamy, Multiphase complementary codes,, IEEE Trans. Inform. Theory, IT-24 (1978), 545.   Google Scholar

[18]

N. Suehiro and M. Hatori, N-shift cross-orthogonal sequences,, IEEE Trans. Inform. Theory, 34 (1988), 143.  doi: 10.1109/18.2615.  Google Scholar

[19]

S. M. Tseng and M. R. Bell, Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences,, IEEE Trans. Commun., 48 (2000), 53.  doi: 10.1109/26.818873.  Google Scholar

[20]

C. C. Tseng and C. L. Liu, Complementary sets of sequences,, IEEE Trans. Inform. Theory, IT-18 (1972), 644.  doi: 10.1109/TIT.1972.1054860.  Google Scholar

[21]

Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Z-periodic complementary Sequence set based on phase shift,, IEEE Signal Proc. Letters, 17 (2010), 891.  doi: 10.1109/LSP.2010.2068288.  Google Scholar

[22]

Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multi-width zero cross-correlation zone,, IEICE Trans. Fundam., E93-A (2010), 1508.   Google Scholar

show all references

References:
[1]

R. Appuswamy and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences,, IEEE Trans. Inform. Theory, 52 (2006), 3817.  doi: 10.1109/TIT.2006.878171.  Google Scholar

[2]

L. Bömer and M. Antweiler, Periodic complementary binary sequences,, IEEE Trans. Inform. Theory, 36 (1990), 1487.  doi: 10.1109/18.59954.  Google Scholar

[3]

H. H. Chen, D. Hank and M. E. Magañz, Design of next-generation CDMA using orthogonal complementary codes and offset stacked spreading,, IEEE Wireless Commun., 2007 (2007), 61.  doi: 10.1109/MWC.2007.386614.  Google Scholar

[4]

J. H. Chung and K. Yang, New design of quaternary low-correlation zone sequences sets and quaternary Hadamard matrices,, IEEE Trans. Inform. Theory, 54 (2008), 3733.  doi: 10.1109/TIT.2008.926406.  Google Scholar

[5]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,, IEEE Trans. Inform. Theory, 45 (1999), 2397.  doi: 10.1109/18.796380.  Google Scholar

[6]

D. Ž. Đoković, Note on periodic complementary sets of binary sequences,, Des. Codes Cryptogr., 13 (1998), 251.  doi: 10.1023/A:1008245823233.  Google Scholar

[7]

D. Ž. Đoković, Periodic complementary sets of binary sequences,, Int. Math. Forum, 4 (2009), 717.   Google Scholar

[8]

P. Z. Fan and M. Darnell, "Sequence Design for Communications Applictions,'', John Wiley & Sons Inc., (1996).   Google Scholar

[9]

P. Z. Fan, W. N. Yuan and Y. F. Tu, Z-complementary binary sequences,, IEEE Signal Proc. Letters, 14 (2007), 509.  doi: 10.1109/LSP.2007.891834.  Google Scholar

[10]

K. Feng, P. J. S. Shyue and Q. Xiang, On the aperiodic and periodic complementary binary sequences,, IEEE Trans. Inform. Theory, 45 (1999), 296.  doi: 10.1109/18.746823.  Google Scholar

[11]

R. L. Frank, Polyphase complementary codes,, IEEE Trans. Inform. Theory, IT-26 (1980), 641.  doi: 10.1109/TIT.1980.1056272.  Google Scholar

[12]

M. J. E. Golay, Complementary series,, IEEE Trans. Inform. Theory, IT-7 (1960), 82.   Google Scholar

[13]

S. W. Golomb and G. Gong, "Signal Design for Good Correlation: for Wireless Communications, Cryptography and Radar Applications,'', Cambridge University Press, (2005).  doi: 10.1017/CBO9780511546907.  Google Scholar

[14]

J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets,, Adv. Math. Commun., 4 (2010), 61.  doi: 10.3934/amc.2010.4.61.  Google Scholar

[15]

S. M. Krone and D. V. Sarwate, Quadriphase sequences for spread spectrum multiple-access communication,, IEEE Trans. Inform. Theory, IT-30 (1984), 520.  doi: 10.1109/TIT.1984.1056913.  Google Scholar

[16]

M. G. Parker, C. Tellambura and K. G. Paterson, Golay complementary sequences,, in, (2003).  doi: 10.1002/0471219282.eot367.  Google Scholar

[17]

R. Sivaswamy, Multiphase complementary codes,, IEEE Trans. Inform. Theory, IT-24 (1978), 545.   Google Scholar

[18]

N. Suehiro and M. Hatori, N-shift cross-orthogonal sequences,, IEEE Trans. Inform. Theory, 34 (1988), 143.  doi: 10.1109/18.2615.  Google Scholar

[19]

S. M. Tseng and M. R. Bell, Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences,, IEEE Trans. Commun., 48 (2000), 53.  doi: 10.1109/26.818873.  Google Scholar

[20]

C. C. Tseng and C. L. Liu, Complementary sets of sequences,, IEEE Trans. Inform. Theory, IT-18 (1972), 644.  doi: 10.1109/TIT.1972.1054860.  Google Scholar

[21]

Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Z-periodic complementary Sequence set based on phase shift,, IEEE Signal Proc. Letters, 17 (2010), 891.  doi: 10.1109/LSP.2010.2068288.  Google Scholar

[22]

Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multi-width zero cross-correlation zone,, IEICE Trans. Fundam., E93-A (2010), 1508.   Google Scholar

[1]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

[2]

Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113-125. doi: 10.3934/amc.2013.7.113

[3]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[4]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

[5]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[6]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[7]

Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451

[8]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[9]

Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with inter-subset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541-552. doi: 10.3934/amc.2018032

[10]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020040

[11]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[12]

Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533

[13]

Wenjun Xia, Jinzhi Lei. Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences & Engineering, 2018, 15 (2) : 507-522. doi: 10.3934/mbe.2018023

[14]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[15]

Finley Freibert. The classification of complementary information set codes of lengths $14$ and $16$. Advances in Mathematics of Communications, 2013, 7 (3) : 267-278. doi: 10.3934/amc.2013.7.267

[16]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[17]

Alexander Zeh, Antonia Wachter. Fast multi-sequence shift-register synthesis with the Euclidean algorithm. Advances in Mathematics of Communications, 2011, 5 (4) : 667-680. doi: 10.3934/amc.2011.5.667

[18]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[19]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[20]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (8)

[Back to Top]