May  2012, 6(2): 249-258. doi: 10.3934/amc.2012.6.249

Bent functions on a Galois ring and systematic authentication codes

1. 

LAGA, Universities of Paris 8 and Paris 13, CNRS, Paris, France

2. 

Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, 09349, México, D.F., Mexico, Mexico

Received  July 2011 Revised  December 2011 Published  April 2012

A class of bent functions on a Galois ring is introduced and based on these functions systematic authentication codes are presented. These codes generalize those appearing in [4] for finite fields.
Citation: Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249
References:
[1]

C. Carlet, More correlation-immune and resilient functions over Galois fields and Galois rings,, in, 1233 (1997), 422. Google Scholar

[2]

C. Carlet, C. Ding and H. Niederreiter, Authentication schemes from highly nonlinear functions,, Des. Codes Cryptogr., 40 (2006), 71. doi: 10.1007/s10623-005-6407-0. Google Scholar

[3]

C. Carlet and S. Dubuc, On generalized bent and $q$-ary perfect nonlinear functions,, in, (1999), 81. Google Scholar

[4]

C. Ding, Systematic authentication codes from highly nonlinear functions,, IEEE Trans. Inform. Theory, 50 (2004), 2421. doi: 10.1109/TIT.2004.834788. Google Scholar

[5]

E. N. Gilbert, F. J. Macwilliams and N. J. A. Sloane, Codes which detect deception,, Bell Syst. Tech. J., 33 (1974), 405. Google Scholar

[6]

A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301. doi: 10.1109/18.312154. Google Scholar

[7]

K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory,'' 2nd edition,, Springer-Verlag, (1990). Google Scholar

[8]

P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties,, J. Comb. Theory, 40 (1985), 90. doi: 10.1016/0097-3165(85)90049-4. Google Scholar

[9]

B. R. McDonald, "Finite Rings with Identity,'', Marcel Deckker, (1974). Google Scholar

[10]

F. Özbudak and Z. Saygi, Some constructions of systematic authentication codes using Galois rings,, Des. Codes Cryptogr., 41 (2006), 343. doi: 10.1007/s10623-006-9021-x. Google Scholar

[11]

G. J. Simmons, Authentication theory/coding theory,, in, (1984), 411. Google Scholar

[12]

G. J. Simmons, A survey of information authentication,, in, (1992), 379. Google Scholar

[13]

D. R. Stinson, "Cryptography: Theory and Practice,'', CRC Press, (1995). Google Scholar

[14]

Z.-X. Wan, "Lectures on Finite Fields and Galois Rings,'', World Scientific, (2003). Google Scholar

show all references

References:
[1]

C. Carlet, More correlation-immune and resilient functions over Galois fields and Galois rings,, in, 1233 (1997), 422. Google Scholar

[2]

C. Carlet, C. Ding and H. Niederreiter, Authentication schemes from highly nonlinear functions,, Des. Codes Cryptogr., 40 (2006), 71. doi: 10.1007/s10623-005-6407-0. Google Scholar

[3]

C. Carlet and S. Dubuc, On generalized bent and $q$-ary perfect nonlinear functions,, in, (1999), 81. Google Scholar

[4]

C. Ding, Systematic authentication codes from highly nonlinear functions,, IEEE Trans. Inform. Theory, 50 (2004), 2421. doi: 10.1109/TIT.2004.834788. Google Scholar

[5]

E. N. Gilbert, F. J. Macwilliams and N. J. A. Sloane, Codes which detect deception,, Bell Syst. Tech. J., 33 (1974), 405. Google Scholar

[6]

A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301. doi: 10.1109/18.312154. Google Scholar

[7]

K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory,'' 2nd edition,, Springer-Verlag, (1990). Google Scholar

[8]

P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties,, J. Comb. Theory, 40 (1985), 90. doi: 10.1016/0097-3165(85)90049-4. Google Scholar

[9]

B. R. McDonald, "Finite Rings with Identity,'', Marcel Deckker, (1974). Google Scholar

[10]

F. Özbudak and Z. Saygi, Some constructions of systematic authentication codes using Galois rings,, Des. Codes Cryptogr., 41 (2006), 343. doi: 10.1007/s10623-006-9021-x. Google Scholar

[11]

G. J. Simmons, Authentication theory/coding theory,, in, (1984), 411. Google Scholar

[12]

G. J. Simmons, A survey of information authentication,, in, (1992), 379. Google Scholar

[13]

D. R. Stinson, "Cryptography: Theory and Practice,'', CRC Press, (1995). Google Scholar

[14]

Z.-X. Wan, "Lectures on Finite Fields and Galois Rings,'', World Scientific, (2003). Google Scholar

[1]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[2]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[3]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[4]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[5]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[6]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[7]

Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21

[8]

Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305

[9]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[10]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[11]

Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026

[12]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[13]

Luciano Viana Felix, Marcelo Firer. Canonical- systematic form for codes in hierarchical poset metrics. Advances in Mathematics of Communications, 2012, 6 (3) : 315-328. doi: 10.3934/amc.2012.6.315

[14]

Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043

[15]

Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421

[16]

Ayça Çeşmelioǧlu, Wilfried Meidl, Alexander Pott. On the dual of (non)-weakly regular bent functions and self-dual bent functions. Advances in Mathematics of Communications, 2013, 7 (4) : 425-440. doi: 10.3934/amc.2013.7.425

[17]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[18]

Kanat Abdukhalikov, Sihem Mesnager. Explicit constructions of bent functions from pseudo-planar functions. Advances in Mathematics of Communications, 2017, 11 (2) : 293-299. doi: 10.3934/amc.2017021

[19]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[20]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (5)

[Back to Top]